
Extensions	to	the	NASA	Tensegrity	Robotics	Toolkit	

CISC499	Projects	Supervised	by	Dorothea	Blostein	
Winter	2015	

	
Tensegrity (tensional integrity) is a structural principle popularized by Buckminster Fuller: a network of
elements under compression is held in place by elements under tension. Tensegrity structures are both
strong and flexible due to the dynamic interplay between tension and compression forces. Applications of
tensegrity include

art www.youtube.com/watch?v=5ALMEq219Nc
 www.youtube.com/watch?v=xDNohDRWTvU

architecture www.youtube.com/watch?v=IeWWPAckC5U

biological modeling www.youtube.com/watch?v=uMug6XzP1R4
 www.youtube.com/watch?v=AT5fsO95-qg

robotics www.youtube.com/watch?v=wR0AlIwEgSE

The NASA Tensegrity Robotics Toolkit (NTRT), available since June 2014, is a public domain collection
of C++ and MATLAB software modules for the modeling, simulation, and control of Tensegrity Robots.
ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt

The goal of this CISC499 project is to extend NTRT in one or more the following ways:

 Refactor NTRT to be more robust and easier to maintain. Tasks include: reduce repetitions (clones)
in the build scripts and code; use declarative rather than procedurally coded specification of the
connections in a tensegrity structure; improve support for unit testing and dependency injection.

 Improve documentation, both for novice and expert users of NTRT.

 Take advantage of multi-core processors.

 Create a suite of unit tests for the core NTRT functionality.

 Add the ability to simulate adaptation in tensegrity structures. For example, an adaptation rule can
specify that a tensioned element becomes stiffer in response to being under a lot of tension.
Adaptation produces structural learning in a tensegrity network, with interesting analogies to learning
in a neural network. Two of Professor Blostein’s recent MSc students, Adrian Muresan and Slava
Jdanov, coded simulations of adaptive tensegrity structures. They wrote stand-alone code because
NTRT was not available at the time they did their work.

One	or	more	students	can	undertake	CISC499	projects	on	this	topic.		Students	must	be	able	to	work	
independently,	with	the	confidence	to	work	on	a	large	software	project.		While	the	NTRT code base
itself is relatively small (around 8000 lines of code), it relies on enormous libraries such as the Bullet
physics engine. Students need to have (or quickly acquire) experience with OS X or Linux. 	
	
	

