CISC 499 Projects

Contact: Prof. Mohammad Zulkernine (mzulker@cs.queensu.ca)

(Joint Work with Marwa Elsayed and Shahrear Igbal)

Project 1: An Execution Zone Aware CPU Scheduler

Linux uses “Completely Fair Scheduler (CFS)” implemented by Ingo Molnar as the default CPU
scheduler. It replaced the previous O(1) vanilla scheduler and merged in Kernel 2.6.23. The CFS
scheduler models an “ideal, precise multi-tasking CPU” on real hardware. The CFS maintains the
amount of time a task has been permitted to execute on the CPU. It uses a time-ordered red-
black tree to maintain fairness in providing processor time to tasks. CFS does not use priorities
directly but instead uses them as a decay factor for the time a task is permitted to execute. Lower-
priority tasks have higher factors of decay, where higher-priority tasks have lower factors of
delay. In this project, the student will modify the existing CFS algorithm to accommodate
execution zones with different priorities. An executions zone enforces constraints on the
applications reside in that zone. Notably, processes may be moved from one zone to another
dynamically based on their behavior. We can call it “Zone Aware Completely Fair Scheduler”.

Project 2: Knowing Malware from the Web

Web Mining is the technique used to extract useful information from the internet. Nowadays, a
massive amount of important information can be found over the internet in the form of natural
language. For example, often malware are reported in blogs and news sites before any signature
available for them in anti-virus software. In this project, the student will use existing data mining
techniques to mine websites and make a program that can indicate whether an application is
malicious according to user opinions/news found on the Internet. This operating system can use
this information to restrict an application’s behavior until the anti-virus database is updated.

Project 3: A Comparison of Code Analysis Tools for Cloud Applications

By design, cloud SaaS application development relies mostly on existing web and internet
technologies. Following the service-oriented architecture (SOA), applications can be composed
as a service from other services. RESTful web services are the most preferred way of exposing
SaaS (e.g., Google, Amazon, Yahoo, Facebook, and Twitter). Code vulnerabilities in SaaS
application open a front end universally accessible from the internet. Successful exploits of such
vulnerabilities can lead to breach the integrity and confidentiality of sensitive data. In this project,
the student will develop a security benchmark suite as cloud applications that utilize RESTful web
services written in JAVA. The suite should contain benign and vulnerable applications. This
benchmark will be used for looking for security vulnerabilities using static or dynamic analysis



tools (e.g., Soot, YASCA, Indus, and Lapse Plus). The benchmark should demonstrate
vulnerabilities like NoSQL injection with its many vectors JSON, JavaScript, scheme, and view -
injection, cross-site scripting (XSS), and information leakage to unauthorized parties. The
application should also reflect inter-app communication, lifecycle callback, implicit and explicit
information flows, and other dynamic features. Then, the student will conduct experiments to

compare between static and dynamic analysis tools to detect vulnerabilities in the developed
benchmark suite.



