
1CISC124 Fall 2016, Topic 3: classes

Objective for last topic:
● convert skills from Python into Java – no big new concepts

Now we start learning about OOP – new concepts for many students.

Topic 3: Classes
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Three important elements:
● encapsulation (this topic)
● inheritance
● polymorphism

Object-Oriented Programming

Encapsulation means:
Putting several pieces of data together & viewing them as a unit 

(an object)
Includes "information hiding" – constrains how you can use & change

data inside an object

(next topic)
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Objective: group several pieces of data together

Example: information about a restaurant
●  name (string)
●  rating (integer)
●  average cost of a meal (double)
●  vegetarian choices? (boolean)

Simplest Kind of Class

4CISC124 Fall 2016, Topic 3: classes

Object Example
Restaurant object: 

name: "River Mill"
rating: 5
avgCost: 35.00
hasVeg: true

name, rating , avgCost , hasVeg : 
attributes or "instance variables"

Class: template/blueprint for a kind of object
Look at simple Restaurant  class....
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Restaurant  class goes in file Restaurant .java
– a Java requirement

One class per file (usually).

Classes & Files

simple example using Restaurant  class....
note constructor & "." notation 

Dining.java  and Restaurant.java  in same folder.
Dining  code automatically finds Restaurant  class.
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Restaurant  = class
object can be an instance of Restaurant
name, rating, etc: instance variables – every instance has them

other terms: attributes, fields
creating an object: instantiating the class

Vocabulary

Every value in Java is either a primitive value 
(number, char, boolean)

or an object.

arrays are special objects with their own syntax 

String  is a predefined Java class – contains characters & length.
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Objects can also contain methods.
Anthropomorphize:

object remembers information (instance variables)
also knows how to do things (instance methods)

Instance Methods

Example: add instance methods to Restaurant  to
increase rating by one (but not go over 5)
change name
ask if rating is 3 or more

Uses for instance methods:
●  return or output information about the object
●  change information inside the object
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Common need: String representation of object for output
Convention: create toString  method, returning String
Add toString  to Restaurant ....

Special Method: toString

Using toString :
System.out.println(rivMill.toString());

shortcut:
System.out.println(rivMill);

Java knows about toString  – special method name.
If you try to print an object, Java automatically calls its toString .
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to create and initialize an object:
    Restaurant hardRock = new Restaurant();
    hardRock.name = "Hard Rock Cafe";
    hardRock.rating = 4;
    hardRock.avgCost = 12.50;
    hardRock.hasVeg = true;

Writing Your Own Constructors

Create a constructor with parameters to do this in one step....
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1. If you don't define any constructors, you get a default constructor
    with no parameters.

2. If you define a constructor, you lose the default constructor.

3. If you want your own plus a zero-parameter constructor, you 
    must write a zero-parameter constructor.

Java Constructor Rules
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Public vs. Private Instance Variables

public class Restaurant {
    ....
    private  int rating;
    ....
}

// in another class:
Restaurant r = new...
System.out.print( r.rating );
r.rating  = 3;
// not legal!!!

public class Restaurant {
    ....
    public  String name;
    ....
}

// in another class:
Restaurant r = new...
System.out.print( r.name );
r.name  = "Golden Griddle";
// using r.name is legal
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Many reasons, depending on circumstances:

1. Protect yourself against mistakes – get control over values
    (example: rating must be between 1 and 5)

2. Emphasis on what you can do with object, not format of data.

3. Possible to change representations without affecting user.

4. Create a "read-only" attribute.

Why Use Private???
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get method: return value of an attribute

set method: change value of an attribute (if you want to allow this)
often includes checks

These are ways to access & change values of instance variables,
even if private.  

Get & Set Methods
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● make name private so it can't be changed
● make average cost private & provide general query methods only
● make rating private to allow changes in representation later and 
   to prevent illegal values

Changes To Restaurant Class
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useful for a payroll program....

New Example: Employee class
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Interface: How to use the class.
●  names & types of public variables and methods
●  plus comments/external documentation describing use

Class Interface vs. Implementation

Implementation: Inner workings of the class
●  private variables and methods
●  method bodies (how methods work)

Goal of information hiding: 
● Provide abstract view of class for users (only what they need to know)
● You can change the implementation without affecting users 

Who are "users" of a class?
● other classes in program
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Sometimes useful to refer to whole object inside an object method. 

“this”

We want to call from an instance method:

  public void zero() {
    Accounting.writeCheck( this );
    payOwed = 0;
  } // end zero

Example: Suppose there's a method in another class that takes an 
Employee  as a parameter:

Accounting.writeCheck(Employee e) {...  
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Another use for “this”
 // Constructor uses awkward parameter names to avo id
 // confusion
 public Employee(String theName, String theTitle, 
                 double theWage) {
    name = theName;

 jobTitle = theTitle;
    wage = theWage;
    ....

 // Alternate version using "this"
 public Employee(String name, String jobTitle, 
                 double wage) {
    this .name = name;

 this .jobTitle = jobTitle;
 this .wage = wage;

    ....
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  // create employee – general case
  public Employee(String theName, String title, dou ble w) {
    name = theName;
    jobTitle = title;
    payOwed = 0;
    if (w < 0) {
      System.out.println("Error");
      wage = 0;
    }
    else
     wage = w;
  } // end constructor

Overloaded Constructors

  // create employee with default starting wage
  public Employee(String theName, String title) {
    name = theName;
    jobTitle = title;
    payOwed = 0;
    wage = 10.0;
  } // end constructor

duplicated code
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  // create employee – general case
  public Employee(String theName, String title, dou ble w) {
    name = theName;
    jobTitle = title;
    payOwed = 0;
    if (w < 0) {
      System.out.println("Error");
      wage = 0;
    }
    else   
      wage = w;
  } // end constructor

A Better Way

  // create employee with default starting wage
  public Employee(String theName, String title) {
    this(theName, title, 10.0); // call to other co nstructor
  } // end constructor
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In constructor from last slide:

Constants

  public Employee(String theName, String title) {
    this(theName, title, 10.0); 
  } // end constructor

Problem with using 10.0  here?

Better version using named constant:

  public static final double MINIMUM_WAGE = 10.0;

  public Employee(String theName, String title) {
    this(theName, title, MINIMUM_WAGE);
  } // end constructor

Why is it OK for the constant to be public?
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name: instance variable
Every Employee  object has a name
A name is a property of a particular Employee

Class Variables (Static)

A class variable is a property of a whole class.
One value, visible to all the instances of the class.

Example for Employee : class variable to keep track of 
maximum wage being paid

Initially set to zero (at start of program)
Updated when?
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Good information hiding:
maxWage is private
use public “get” method to access
other classes may not change directly 

Class Method

To call a class method from outside the class:
use class name, not object name

Employee.getMaxWage()
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public static  final double MINIMUM_WAGE = 10.0;

constants & static

Why is the constant static?
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Static-Only Classes
Example: Math  class
contains useful constants and methods:

Math.PI
Math.sqrt()
Math.log()
etc.

no instance variables
everything is static

Typical Java program:
one static-only "main" class
other classes containing mix of static & instance data
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Employee e = new Employee(....);

References & Aliases

What does Java do?
1. finds a free spot in memory
2. creates a new Employee  object in that memory

3. variable e holds a reference to that object – its address in memory

Possible to have two variables referring to the same object --
two aliases for the object.

When you pass an object as a parameter, you're passing a reference.
Parameter & argument are two aliases for the same object.
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    Employee a = new Employee("Mickey", "mouse", 10 );
    Employee b = new Employee("Donald", "duck", 20) ;
    Employee c = b;
    c.raise(5);
    b.raise(5);
    a.raise(5);
    System.out.println(a);
    System.out.println(b);
    System.out.println(c);

Aliasing Example (1)
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    Employee d = new Employee("d", "d job", 10);
    Employee e = new Employee("e", "e job", 10);
    Employee f = new Employee("f", "f job", 10);
    f = e;
    e = d;
    d = f;    
    d.pay(5);
    d = e;
    d.pay(7);
    d = f;
    d.pay(3);
    System.out.println(d);
    System.out.println(e);
    System.out.println(f);

Aliasing Example (2)
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A class is immutable if:
●  all instance variables are private
●  there are no methods that change the instance variables

Immutable Classes

How do the instance variables get values?

Once an immutable object is created, its contents never change.
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In Java, String  is an immutable class.
All Strings are immutable – can't be changed.

Example: String

String s = “CISC 124”;
s = s.substring(0,4);

Have we changed a string??
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Package = collection of classes
Reasons to use packages:

●  organizing large programs
●  distribution
●  name conflicts

Packages

method1

Program

Package1 Package2 Package3

Class1 Class2
.... ....

method2 method3

....
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java.lang
Package java.lang  contains very commonly used classes.
Automatically imported into your program – no import statement needed.
Examples:

String
System

Digression: Java API documentation
https://docs.oracle.com/javase/8/docs/api/
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null
Special value: null .  
Any object type can take the value null :

String s = null;
Employee e = null;
Scanner sc = null;
....

Means "no object" -- like none  in Python.

Implemented as an address of zero.
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Default Values
If an instance/class variable isn't explicitly initialized, it gets a default
value:

numbers: 0
boolean: false
characters: '\0'
objects: null

Different rule for local variables (inside methods): If variable isn't 
initialized before use it's an error.

35CISC124 Fall 2016, Topic 3: classes

One More Example: Time
Things to note:

● overloaded constructors, including copy constructor
● use of static methods
● two kinds of addition methods (one instance, one static)
● equals  method
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Representation Choices
Class as it is:

● remembers hour, minute, second
● set/get methods, toString  are simple
● arithmetic is more difficult

Another possibility:
● replace hour/minute/second with total seconds
● arithmetic is simple
● set/get and toString  are more difficult
● saves space

If we changed representation:
● what would implementor have to change?
● what would users have to change?
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Convenient Notation: UML
Unified Modeling Language
different kinds of diagrams for representing program design
UML class diagrams: shows contents of classes

***I will not ask you to write UML for assignments/quizzes/exams.
***I may ask you to read simple UML class diagrams
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Detailed class diagram for the Employee class:

UML

methods

name of class

attributes

"+" means public
"-" means private
“$” means static

      Employee
-name: String
-jobTitle: String
-wage: double
-payOwed: double
-$maxWage: double

+$Employee(name:String, title:String)
+getName(): String
+setTitle(newTitle:String)
+$getMaxWage(): double
    .........
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Previous diagram showed lots of detail.  Other possible class diagrams 
for Employee:

UML

 Employee
name
jobTitle
wage
payOwed

Employee

  Employee

+$Employee()
+getName()
+setTitle()
+$getMaxWage()
   .....

      Employee
+$Employee(name:String, title:String)
+getName(): String
+setTitle(newTitle:String)
+$getMaxWage(): double
    .........

Amount of detail depends on:
• stage of planning
• audience
• purpose of diagram
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Class diagrams may also show relationships between classes

UML

"works in" is name of relationship
triangle arrow shows direction (an Employee works in an Office)

Employee Officeworks in
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Relationships may have multiplicity:

UML

Employee Officeworks in
1 1

1-1 correspondence between employees and offices

Employee Officeworks in
0..3 1

Every office has 0-3 employees working in it.
Every employee has exactly one office.

Employee Officeworks in
1..* 0..2

● some employees with no office or two offices
● no empty offices
● no set upper limit on number of people in an office

42CISC124 Fall 2016, Topic 3: classes

Complex Class Diagram


