
1CISC124 Fall 2016, Topic 3: classes

Objective for last topic:
● convert skills from Python into Java – no big new concepts

Now we start learning about OOP – new concepts for many students.

Topic 3: Classes

2CISC124 Fall 2016, Topic 3: classes

Three important elements:
● encapsulation (this topic)
● inheritance
● polymorphism

Object-Oriented Programming

Encapsulation means:
Putting several pieces of data together & viewing them as a unit

(an object)
Includes "information hiding" – constrains how you can use & change

data inside an object

(next topic)

3CISC124 Fall 2016, Topic 3: classes

Objective: group several pieces of data together

Example: information about a restaurant
● name (string)
● rating (integer)
● average cost of a meal (double)
● vegetarian choices? (boolean)

Simplest Kind of Class

4CISC124 Fall 2016, Topic 3: classes

Object Example
Restaurant object:

name: "River Mill"
rating: 5
avgCost: 35.00
hasVeg: true

name, rating , avgCost , hasVeg :
attributes or "instance variables"

Class: template/blueprint for a kind of object
Look at simple Restaurant class....

5CISC124 Fall 2016, Topic 3: classes

Restaurant class goes in file Restaurant .java
– a Java requirement

One class per file (usually).

Classes & Files

simple example using Restaurant class....
note constructor & "." notation

Dining.java and Restaurant.java in same folder.
Dining code automatically finds Restaurant class.

6CISC124 Fall 2016, Topic 3: classes

Restaurant = class
object can be an instance of Restaurant
name, rating, etc: instance variables – every instance has them

other terms: attributes, fields
creating an object: instantiating the class

Vocabulary

Every value in Java is either a primitive value
(number, char, boolean)

or an object.

arrays are special objects with their own syntax

String is a predefined Java class – contains characters & length.

7CISC124 Fall 2016, Topic 3: classes

Objects can also contain methods.
Anthropomorphize:

object remembers information (instance variables)
also knows how to do things (instance methods)

Instance Methods

Example: add instance methods to Restaurant to
increase rating by one (but not go over 5)
change name
ask if rating is 3 or more

Uses for instance methods:
● return or output information about the object
● change information inside the object

8CISC124 Fall 2016, Topic 3: classes

Common need: String representation of object for output
Convention: create toString method, returning String
Add toString to Restaurant

Special Method: toString

Using toString :
System.out.println(rivMill.toString());

shortcut:
System.out.println(rivMill);

Java knows about toString – special method name.
If you try to print an object, Java automatically calls its toString .

9CISC124 Fall 2016, Topic 3: classes

to create and initialize an object:
 Restaurant hardRock = new Restaurant();
 hardRock.name = "Hard Rock Cafe";
 hardRock.rating = 4;
 hardRock.avgCost = 12.50;
 hardRock.hasVeg = true;

Writing Your Own Constructors

Create a constructor with parameters to do this in one step....

10CISC124 Fall 2016, Topic 3: classes

1. If you don't define any constructors, you get a default constructor
 with no parameters.

2. If you define a constructor, you lose the default constructor.

3. If you want your own plus a zero-parameter constructor, you
 must write a zero-parameter constructor.

Java Constructor Rules

11CISC124 Fall 2016, Topic 3: classes

Public vs. Private Instance Variables

public class Restaurant {

 private int rating;

}

// in another class:
Restaurant r = new...
System.out.print(r.rating);
r.rating = 3;
// not legal!!!

public class Restaurant {

 public String name;

}

// in another class:
Restaurant r = new...
System.out.print(r.name);
r.name = "Golden Griddle";
// using r.name is legal

12CISC124 Fall 2016, Topic 3: classes

Many reasons, depending on circumstances:

1. Protect yourself against mistakes – get control over values
 (example: rating must be between 1 and 5)

2. Emphasis on what you can do with object, not format of data.

3. Possible to change representations without affecting user.

4. Create a "read-only" attribute.

Why Use Private???

13CISC124 Fall 2016, Topic 3: classes

get method: return value of an attribute

set method: change value of an attribute (if you want to allow this)
often includes checks

These are ways to access & change values of instance variables,
even if private.

Get & Set Methods

14CISC124 Fall 2016, Topic 3: classes

● make name private so it can't be changed
● make average cost private & provide general query methods only
● make rating private to allow changes in representation later and
 to prevent illegal values

Changes To Restaurant Class

15CISC124 Fall 2016, Topic 3: classes

useful for a payroll program....

New Example: Employee class

16CISC124 Fall 2016, Topic 3: classes

Interface: How to use the class.
● names & types of public variables and methods
● plus comments/external documentation describing use

Class Interface vs. Implementation

Implementation: Inner workings of the class
● private variables and methods
● method bodies (how methods work)

Goal of information hiding:
● Provide abstract view of class for users (only what they need to know)
● You can change the implementation without affecting users

Who are "users" of a class?
● other classes in program

17CISC124 Fall 2016, Topic 3: classes

Sometimes useful to refer to whole object inside an object method.

“this”

We want to call from an instance method:

 public void zero() {
 Accounting.writeCheck(this);
 payOwed = 0;
 } // end zero

Example: Suppose there's a method in another class that takes an
Employee as a parameter:

Accounting.writeCheck(Employee e) {...

18CISC124 Fall 2016, Topic 3: classes

Another use for “this”
 // Constructor uses awkward parameter names to avo id
 // confusion
 public Employee(String theName, String theTitle,
 double theWage) {
 name = theName;

 jobTitle = theTitle;
 wage = theWage;

 // Alternate version using "this"
 public Employee(String name, String jobTitle,
 double wage) {
 this .name = name;

 this .jobTitle = jobTitle;
 this .wage = wage;

19CISC124 Fall 2016, Topic 3: classes

 // create employee – general case
 public Employee(String theName, String title, dou ble w) {
 name = theName;
 jobTitle = title;
 payOwed = 0;
 if (w < 0) {
 System.out.println("Error");
 wage = 0;
 }
 else
 wage = w;
 } // end constructor

Overloaded Constructors

 // create employee with default starting wage
 public Employee(String theName, String title) {
 name = theName;
 jobTitle = title;
 payOwed = 0;
 wage = 10.0;
 } // end constructor

duplicated code

20CISC124 Fall 2016, Topic 3: classes

 // create employee – general case
 public Employee(String theName, String title, dou ble w) {
 name = theName;
 jobTitle = title;
 payOwed = 0;
 if (w < 0) {
 System.out.println("Error");
 wage = 0;
 }
 else
 wage = w;
 } // end constructor

A Better Way

 // create employee with default starting wage
 public Employee(String theName, String title) {
 this(theName, title, 10.0); // call to other co nstructor
 } // end constructor

21CISC124 Fall 2016, Topic 3: classes

In constructor from last slide:

Constants

 public Employee(String theName, String title) {
 this(theName, title, 10.0);
 } // end constructor

Problem with using 10.0 here?

Better version using named constant:

 public static final double MINIMUM_WAGE = 10.0;

 public Employee(String theName, String title) {
 this(theName, title, MINIMUM_WAGE);
 } // end constructor

Why is it OK for the constant to be public?

22CISC124 Fall 2016, Topic 3: classes

name: instance variable
Every Employee object has a name
A name is a property of a particular Employee

Class Variables (Static)

A class variable is a property of a whole class.
One value, visible to all the instances of the class.

Example for Employee : class variable to keep track of
maximum wage being paid

Initially set to zero (at start of program)
Updated when?

23CISC124 Fall 2016, Topic 3: classes

Good information hiding:
maxWage is private
use public “get” method to access
other classes may not change directly

Class Method

To call a class method from outside the class:
use class name, not object name

Employee.getMaxWage()

24CISC124 Fall 2016, Topic 3: classes

public static final double MINIMUM_WAGE = 10.0;

constants & static

Why is the constant static?

25CISC124 Fall 2016, Topic 3: classes

Static-Only Classes
Example: Math class
contains useful constants and methods:

Math.PI
Math.sqrt()
Math.log()
etc.

no instance variables
everything is static

Typical Java program:
one static-only "main" class
other classes containing mix of static & instance data

26CISC124 Fall 2016, Topic 3: classes

Employee e = new Employee(....);

References & Aliases

What does Java do?
1. finds a free spot in memory
2. creates a new Employee object in that memory

3. variable e holds a reference to that object – its address in memory

Possible to have two variables referring to the same object --
two aliases for the object.

When you pass an object as a parameter, you're passing a reference.
Parameter & argument are two aliases for the same object.

27CISC124 Fall 2016, Topic 3: classes

 Employee a = new Employee("Mickey", "mouse", 10);
 Employee b = new Employee("Donald", "duck", 20) ;
 Employee c = b;
 c.raise(5);
 b.raise(5);
 a.raise(5);
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);

Aliasing Example (1)

28CISC124 Fall 2016, Topic 3: classes

 Employee d = new Employee("d", "d job", 10);
 Employee e = new Employee("e", "e job", 10);
 Employee f = new Employee("f", "f job", 10);
 f = e;
 e = d;
 d = f;
 d.pay(5);
 d = e;
 d.pay(7);
 d = f;
 d.pay(3);
 System.out.println(d);
 System.out.println(e);
 System.out.println(f);

Aliasing Example (2)

29CISC124 Fall 2016, Topic 3: classes

A class is immutable if:
● all instance variables are private
● there are no methods that change the instance variables

Immutable Classes

How do the instance variables get values?

Once an immutable object is created, its contents never change.

30CISC124 Fall 2016, Topic 3: classes

In Java, String is an immutable class.
All Strings are immutable – can't be changed.

Example: String

String s = “CISC 124”;
s = s.substring(0,4);

Have we changed a string??

31CISC124 Fall 2016, Topic 3: classes

Package = collection of classes
Reasons to use packages:

● organizing large programs
● distribution
● name conflicts

Packages

method1

Program

Package1 Package2 Package3

Class1 Class2
....

method2 method3

....

32CISC124 Fall 2016, Topic 3: classes

java.lang
Package java.lang contains very commonly used classes.
Automatically imported into your program – no import statement needed.
Examples:

String
System

Digression: Java API documentation
https://docs.oracle.com/javase/8/docs/api/

33CISC124 Fall 2016, Topic 3: classes

null
Special value: null .
Any object type can take the value null :

String s = null;
Employee e = null;
Scanner sc = null;
....

Means "no object" -- like none in Python.

Implemented as an address of zero.

34CISC124 Fall 2016, Topic 3: classes

Default Values
If an instance/class variable isn't explicitly initialized, it gets a default
value:

numbers: 0
boolean: false
characters: '\0'
objects: null

Different rule for local variables (inside methods): If variable isn't
initialized before use it's an error.

35CISC124 Fall 2016, Topic 3: classes

One More Example: Time
Things to note:

● overloaded constructors, including copy constructor
● use of static methods
● two kinds of addition methods (one instance, one static)
● equals method

36CISC124 Fall 2016, Topic 3: classes

Representation Choices
Class as it is:

● remembers hour, minute, second
● set/get methods, toString are simple
● arithmetic is more difficult

Another possibility:
● replace hour/minute/second with total seconds
● arithmetic is simple
● set/get and toString are more difficult
● saves space

If we changed representation:
● what would implementor have to change?
● what would users have to change?

37CISC124 Fall 2016, Topic 3: classes

Convenient Notation: UML
Unified Modeling Language
different kinds of diagrams for representing program design
UML class diagrams: shows contents of classes

***I will not ask you to write UML for assignments/quizzes/exams.
***I may ask you to read simple UML class diagrams

38CISC124 Fall 2016, Topic 3: classes

Detailed class diagram for the Employee class:

UML

methods

name of class

attributes

"+" means public
"-" means private
“$” means static

 Employee
-name: String
-jobTitle: String
-wage: double
-payOwed: double
-$maxWage: double

+$Employee(name:String, title:String)
+getName(): String
+setTitle(newTitle:String)
+$getMaxWage(): double

39CISC124 Fall 2016, Topic 3: classes

Previous diagram showed lots of detail. Other possible class diagrams
for Employee:

UML

 Employee
name
jobTitle
wage
payOwed

Employee

 Employee

+$Employee()
+getName()
+setTitle()
+$getMaxWage()

 Employee
+$Employee(name:String, title:String)
+getName(): String
+setTitle(newTitle:String)
+$getMaxWage(): double

Amount of detail depends on:
• stage of planning
• audience
• purpose of diagram

40CISC124 Fall 2016, Topic 3: classes

Class diagrams may also show relationships between classes

UML

"works in" is name of relationship
triangle arrow shows direction (an Employee works in an Office)

Employee Officeworks in

41CISC124 Fall 2016, Topic 3: classes

Relationships may have multiplicity:

UML

Employee Officeworks in
1 1

1-1 correspondence between employees and offices

Employee Officeworks in
0..3 1

Every office has 0-3 employees working in it.
Every employee has exactly one office.

Employee Officeworks in
1..* 0..2

● some employees with no office or two offices
● no empty offices
● no set upper limit on number of people in an office

42CISC124 Fall 2016, Topic 3: classes

Complex Class Diagram

