
Loops and Other Stuff1 1 Like a Circle in a Spiral...

Robin Dawes
September 13, 2021

L
ooks at loops and a few important Python features.

.

While Loops

Like most modern programming languages, Python provides us with
two forms of loops: while loops and for loops. It is not actually necessary to have two

different types of loop, since while loops
can be used to replicate the actions
of for loops. For that matter, it is not
actually necessary to have loops at all:
the Haskell language does not have
loops as a built-in feature.

While loops can also be called conditional loops - the loop executes
as long as some Boolean (true/false) condition is true.

Here’s a very simple example:

n = 100

while (n > 1):

print(n)

if (n % 2 == 0):

n = n // 2

else:

n = 3*n + 1

You might want to run that code to see the sequence of integers
it prints. This example illustrates one of the most famous unsolved
questions in mathematics. The Collatz Conjecture is: Not one of the most important prob-

lems, just one of the most famous.

Let n be any positive integer. The Collatz sequence for n is created
by repeatedly applying the following rule to the current value of n :

If n is even, let n =
n
2
and if n is odd, let n = 3n + 1.

We conjecture that ∀ positive values of n, the Collatz sequence for n
contains the value 1

Example: Here is the Collatz sequence for n = 7, up to the first occur-
rence of 1

7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1



loops and other stuff 2

It has been shown that the Collatz Conjecture is true for millions
of integers ... but nobody has been able to prove that it is true for
all integers. Nor has anyone found an integer for which the Collatz
sequence goes on forever without ever containing 1.

This is a perfect illustration of when we should use a while loop:
whenever we don’t know how many times we need the loop to exe-
cute, and the termination is based on a logical condition.

For Loops

For loops, which are also referrred to as iterated loops, are typically
used when we need to repeat some action a known number of times,
or we need to repeat the action on every element of a list or other
indexed structure (Python uses the word "iterable" for such structures
- we will discuss this word soon.)

For example, we may wish to print 12 consecutive blank lines. We
would use a for loop to execute the print statement 12 times.

Another example: we would use a for loop to find the largest value
in a set of numbers.

A for loop usually uses an index variable which is assigned a new
value each time the loop repeats. The loop executes until the index
variable reaches some specific value.

Many languages use a three-part header to define for loops, often
looking something like this

for (i = 1; i <= 12; i++)

{body of loop}

which means "create an integer variable called i, initialize it to 1, loop
until i is > 12, and increment i by 1 each time"



loops and other stuff 3

Python does it differently. In Python we specify the full set of val-
ues for the variable to take, in order. So a Python for loop might look
like this:

for i in [7,45,3,82]:

body of loop

This loop would execute four times. The first time through, i would
have the value 7, the next time through i would equal 45, etc.

To recreate the effect of the standard "increment by 1" for loop,
Python provides a built-in function called range. The instruction

range(n)

creates a list that looks like this:

[0,1,2,3,..., n-1]

where the ... is just my shorthand for "all the integers between 3 and
n-1". The actual Python list doesn’t have three dots in it!

The range function has more options ... you can specify the start
value, and the step size. We’ll discuss those options if we need them,
or you can look them up.

Now, about that "0 to n-1" instead of "1 to n" thing. Like most (but
not all) programming languages Python uses "0-based addressing".
In any indexed object (such as a list or string) the first position is
considered to be position 0. So if the list has n elements, the last one
is in position n-1. Since we very often use a for loop to iterate through This unnatural way of addressing is

a perfect example of making humans
adapt to technology rather than design-
ing technology to fit with humans. I’ve
been against it for 50 years ... but there’s
not much hope of my opposition having
any effect!

all the positions in a list, it does make sense for the range function to
create the list of index values that are needed.

Of course Python lists can change in size (we have already seen the
append function in some of our examples). We can use the built-in
len function to find the number of elements currently in a list. A for
loop to print all the values in a list might look like this:

for i in range(len(my_list)):

print(my_list[i])

and that’s pretty concise.



loops and other stuff 4

But remember that the Python for loop just needs a list of all the
values the index variable is to take. In the example just presented,
my_list is a list of values. In this loop, we don’t really need to know the
exact position of the values in the list, we just need the values. So we
can just use my_list as the list of values, and use the index variable to
take on those values one after the other.

for x in my_list:

print(x)

and that’s brilliant. It doesn’t introduce an unnecessary index variable,
it doesn’t generate a list of positions, and it’s immediately obvious
what we want it to do. This is a triumph of language design.

Lists and Tuples

We will take a detailed look at Python lists in an upcoming class, but
here’s a very brief overview.

Python lists are a blend of what other languages call arrays and
linked lists. Like an array, a Python list is indexed ... so we can ac- Java has a structure called an arraylist

which is similar.cess any position directly using list_name[i]. But like a linked list, a
Python list can be extended to any length, new values can be added
at any position in the list, and existing values can be deleted from the
list. The elements in a Python list can be of any type at all, and objects
of different types can occupy the same list. So a Python list is a very
flexible thing. We will talk later about the cost we pay

for this flexibility ... dark foreshadow-
ing!Python tuples look a lot like lists. The visual difference is that a

Python list is defined with square brackets "[" and "]", where as a
Python tuple is defined with round brackets "(" and ")". So [1,2,3] is
a list with three elements, and (1,2,3) is a tuple with exactly the same
three elements. Like lists, tuples are indexed objects so we can use
something like this:

some_numbers = (1,2,3,4)

x = some_numbers[2]

The important difference is that a Python tuple is an immutable
object, which means we cannot modify its value. We can’t append,
insert or delete values from a tuple, and we can’t assign new values to
the elements of the tuple.



loops and other stuff 5

So whereas something like

a_list = [1,2,3,4]

a_list[1] = 37.8

is legal, this

a_tuple = (1,2,3,4)

a_tuple[1] = 37.8

is not.

This may seem strange and useless, but it’s not! There are several
very good reasons why - in some circumstances - the immutability
of tuples is exactly what we want. I’ll let you think about what those
reasons might be.


	While Loops
	For Loops
	Lists and Tuples

