
Big O Classification
Robin Dawes
February 13, 2021

O
ffers a brief demonstration of different growth rates of the
timing functions for algorithms. We are introduced to "Big O"
classification of algorithms.

.

Groundwork

It’s worth reviewing some basic details that relate to constructing a
timing function for an algorithm. They are very straightforward and
should be already familiar.

To determine the timing function for an algorithm we count the
fundamental operations as a function of the size of the input. But
when we do this, we usually just count the operations that involve the
actual data. In other words we ignore things like index variables and
execution control operations. As we will see, we don’t even need to be
completely precise in our counting. Consider this algorithm, which is
written in the kind of informal pseudo-code that I will use throughout
these notes. Notice that I’m leaving out all declarations.

CODE OPERATIONS

A1:

n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment, repeated n times)

We don’t count any of the operations relating to the loop man-
agement because they don’t involve the data. So we would write the
timing function for A1 as

TA1(n) = 2 + 2n
The size of the input here is actually
n + 1 since that is the total number
of read actions we execute. For our
purposes here, calling it n is fine.

big o classification 2

Now let’s look at two more very simple algorithms:

CODE OPERATIONS

A2:

n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read()*i 3*n (1 I/O, 1 multiplication and 1 assignment, repeated n times)

for i = 1 to n:

for j = 1 to n:

print A[i] + A[j] 2*n^2 (2 ops, n^2 times)

So we would write the timing function for A2 as

TA2(n) = 2 + 3n + 2n2

CODE OPERATIONS

A3: n = read() 2 (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment, repeated n times)

B[i] = 2*A[i] 2*n (1 I/O and 1 assignment, repeated n times)

So we would write the timing function for A3 as

TA3(n) = 2 + 4n

Our goal is to use the timing functions as a way of comparing the
efficiency of algorithms. But as we have already seen, they are some-
what approximate because they don’t count every single operation.
So instead of comparing the explicit timing functions for different
algorithms, we use the timing functions to organize algorithms into
groups. Then to compare two algorithms, we compare the groups
they are assigned to.

We group algorithms together based on the growth-rate of their
timing functions. To illustrate this we can look at the three algorithms
above and see what happens when we repeatedly double the value of
n (ie. double the size of the input).

big o classification 3

n TA1(n) TA2(n) TA3(n)

1 4 7 6
2 6 16 10
4 10 46 18
8 18 154 34
16 34 562 66
32 66 2146 130
64 130 8386 258

128 258 33154 514
256 514 131842 1026
512 1026 525826 2050
1024 2050 2100226 4098

Now how fast are these timing functions growing? Let’s look at
the ratios for successive values in the columns. For A1, the ratios are
3
2

,
5
3

,
9
5

,
17
9

. . . etc. We can see that these ratios are getting closer and
closer to to 2. For A3, the sequence of ratios is almost identical (it’s Can you see why they will never quite

reach 2?
just missing the 3

2
term) so it has the same behaviour.

For A2, the sequence of ratios is
16
7

,
46
16

,
154
46

... it’s a bit harder to
see the pattern. The ratios work out to (approximately) 2.3, 2.9, 3.3, 3.6, 3.8
... and if we went further, we would see that the ratios approach 4 but
never quite reach it.

So when n increases by a factor of 2, TA1(n) and TA3(n) also in-
crease by a factor of (slightly less than) 2, but TA2(n) increases by a
factor of (slightly less than) 4.

Experiment: What if we try increasing n by a factor of 3? That is, start
with n = 1, then n = 3, then n = 9, 27, 81, etc. You can work it out, but
I’ll jump to the results: TA1(n) and TA3(n) also increase by a factor of
(slightly less than) 3, and TA2(n) increases by a factor of (slightly less
than) 9.

In general, we find that if the input n increases by a factor of k,
TA1(n) and TA3(n) also increase by (slightly less than) a factor of k .
We can write this as

TA1(k ∗ n)
TA1(n)

≤ k and
TA3(k ∗ n)

TA3(n)
≤ k

Similarly, we find that when n increases by a factor of k, TA2 in-

big o classification 4

creases by (slightly less than) a factor of k2. We can write this as

TA2(k ∗ n)
TA1(n)

≤ k2

We got to those conclusions by observation, but we can reach the
same conclusion algebraically. For example, we can write

TA2(n) = 2n2 + 3n + 2

TA2(k ∗ n) = 2(k ∗ n)2 + 3(k ∗ n) + 2

= k2 ∗ (2n2) + k ∗ (3n) + 2

≤ k2 ∗ (2n2 + 3n + 2)

and we see that
TA2(k ∗ n)

TA2(n)
is always ≤ k2

Let’s focus on TA1(n) . We have seen that it grows linearly (ie. at
the same rate) as n grows. Can we use that information to give any
information about the actual value of TA1(n)?

Suppose there is some particular value n0 for which we can deter-
mine that TA1(n0) ≤ c ∗ n0 for some positive constant c.

Now consider TA1(k ∗ n0) where k ≥ 1. From our previous dis-

cussion we know
TA1(k ∗ n0)

TA1(n0)
≤ k and from there it is a simple step

to
TA1(k ∗ n0) ≤ c ∗ (k ∗ n0)

Now if we replace "k ∗ n0" by a generic "n", we get

TA1(n) ≤ c ∗ n ∀n ≥ n0

Are there such an n0 and constant c? Yes! We can see that if we let
n0 = 1 and c = 4, the requirements are satisfied.

Now what about TA3(n) ? You can work out that the same property
holds (though you cannot use the same value for c).

But what about TA2? Suppose we start by establishing that for some
value n0, TA2(n0) ≤ c ∗ n0 for some constant c. Now we can consider

TA2(k ∗ n0). From our previous analysis we know
TA2(k ∗ n0)

TA2(n0)
≤ k2

which gives
TA2(k ∗ n0) ≤ c ∗ k ∗ (k ∗ n0)

big o classification 5

Now if we replace "k ∗ n0" by "n" we get

TA2(n) ≤ c ∗ k ∗ n ∀ n ≥ n0

.... which does not fit the same pattern as we saw for TA1(n) and
TA3(n). In fact it is kind of confusing because it still has a k in it ... but
remember that we used n to replace k ∗ n0, so k =

n
n0

... and we can

use this to replace the k in the right hand side! This gives

TA2(n) ≤ c ∗ n
n0
∗ n ∀ n ≥ n0

ie.
TA2(n) ≤

c
n0
∗ n2 ∀ n ≥ n0

Since c and n0 are both constants, d =
c

n0
is a constant. Thus

TA2(n) ≤ d ∗ n2 ∀n ≥ n0

big o classification 6

Was there anything unique about the timing functions that we
used? Not at all. To generalize what we have seen, consider this small
theorem:

Theorem: Suppose an algorithm A has timing function

TA(n) = at ∗ nt + at−1 ∗ nt−1 + · · ·+ a1 ∗ n + a0

where the ai coefficients are constants and at > 0.

Then ∃ a constant c such that

∀ n ≥ 1, TA(n) ≤ c ∗ nt

Proof:

Let a∗ = max{a0, . . . , at}

Let c = (t + 1) ∗ a∗

Let n0 be any value ≥ 1.

a∗ ∗ (n0)
t ≥ ai ∗ (n0)

i ∀ i ∈ {0, . . . , t}

⇒ c ∗ (n0)
t ≥ at ∗ (n0)

t + at−1 ∗ (n0)
t−1 + · · ·+ a1 ∗ n0 + a0 = TA(n0)

DJ Moose is used in these notes to mark
the end of a proof.

Definition: Let f (n) and g(n) be non-negative valued functions on
the set of non-negative numbers. If there are constants n0 and c such
that

f (n) ≤ c ∗ g(n) ∀ n ≥ n0

then we write
f (n) ∈ O(g(n))

and we say f (n) is in Big O of g(n) or (more formally) f (n) is in
Order g(n).

The significance of this is that as n gets large, the growth-rate of
f (n) is no greater than the growth-rate of g(n). In other words, the
growth of g(n) is an upper bound on the growth of f (n).

So O(g(n)) actually defines a class of functions: all the functions
that have that particular relationship to g(n). What we’re going to do
is choose a bunch of canonical (and simple) functions as g(n), and use

big o classification 7

those functions to define useful classes of other functions that we can
use to compare the efficiency of different algorithms.

The canonical g(n) functions are mostly listed here (omitting a
few that don’t really concern us at this point). I’m also showing the
names people typically use when these functions are used to classify
the running time of algorithms.

g(n) Common Name for O(g(n))

c Constant Time or O(1) Time
log n Logarithmic Time
n Linear Time
n log n n log n Time
n2 Quadratic Time
n3 Cubic Time
nk Polynomial Time
n! Factorial Time
cn (c > 1) Exponential Time

Putting all of this together, we find that TA1(n) ∈ O(n) and
TA3(n) ∈ O(n) and TA2(n) ∈ O(n2)

That looks like a pretty clear distinction between TA2(n) and the
other two ... but is it? Can we be sure that TA2(n) is not also in O(n) ?
Let’s check that out.

Suppose TA2(n) ∈ O(n). Then there exist constants n0 and c such
that

TA2(n) ≤ c ∗ n ∀ n ≥ n0

ie.

2n2 + 3 ∗ n + 2 ≤ c ∗ n ∀n ≥ n0

2n2 + 3 ∗ n− c ∗ n ≤ −2 ∀n ≥ n0

(2n + 3− c)n ≤ −2 ∀n ≥ n0

But ∀ n >
c− 3

2
, the left hand side is positive . . . so the inequality

does not hold for all n ≥ n0 .
It makes no difference which of c and n0
is larger.

Therefore TA2(n) /∈ O(n)

And now, finally, we are sure that TA2(n) does not belong to the
same class of function as TA1(n) and TA3(n).

big o classification 8

Nesting of Order Classes

The relationship between different order classes is a bit more com-
plex than it might seem. In the previous section we established that
TA1(n) ∈ O(n). But observe that if TA1(n) ≤ c ∗ n, then TA1(n) ≤ c ∗ n2

as well, so TA1(n) ∈ O(n2) as well . . . and the same can be said of any
function in O(n)!

Assuming n ≥ 1, which it always is
when used as a measure of the size of
the input to an algorithm that takes
input.

Thus we can see that the class of functions described by O(n) is a
subset of the class described by O(n2), which is a subset of the O(n3)

class, etc. In fact we can establish this:

O(c) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) . . . etc.

In practice we always try to identify the lowest order class that a
function belongs to. So when we say something like TA(n) ∈ O(n2),
we are also saying that TA(n) is not in any of the order classes that are
subsets of O(n2).

A final observation: for simple algorithms like A1, A2 and A3, the
process of classification is extremely easy: we just look for the step
that is executed the most often and determine the power of n that
relates to that step. Thus for A1 and A3, the most frequent step is ex-
ecuted c ∗ n times for some c (we don’t care what c is) so these timing
functions are in O(n). For A2, the most frequent step is executed c ∗ n2

times for some c . . . so TA2 ∈ O(n2).

	Intro
	Nesting of Order Classes

