
Omega and Theta Classification
Robin Dawes
February 16, 2021

S
hows the importance of the Ω and Θ classification for establish-
ing deeper understanding of the performance of algorithms.

.

Introduction

Big O classification is all about putting an upper bound on the
growth-rate of a function (typically a function that describes the run-
ning time of an algorithm). This is just the first step into the study
of algorithmic complexity - there are several other ways of classify
functions based on the time and/or space they use. Two of these are of
particular interest to us in our exploration of data structures: Omega
(Ω) Classification and Theta (Θ) Classification.

Combinations of Functions

If f1(n) ∈ O(g1(n)) , and f2(n) ∈ O(g2(n))

then f1(n) + f2(n) ∈ O(max(g1(n), g2(n)))

and f1(n) ∗ f2(n) ∈ O(g1(n) ∗ g2(n))

Omega Classification

Big O classification gives us an upper bound on the growth-rate
of a function but it doesn’t tell us anything about a lower bound on the
growth-rate.

Your first reaction to this observation might well be "Why would
we care about a lower bound on the growth-rate? We use this com-
putational complexity stuff to measure the worst-case running time
of an algorithm ... and for worst-case analysis, all we need is an upper
bound."



omega and theta classification 2

Before we explain why lower-bound analysis is important, we will
define exactly what we mean by it and how it works.

Definition: Let f (n) and g(n) be functions. If there exist constants
n0 and c with c > 0 such that

f (n) ≥ c ∗ g(n) ∀ n ≥ n0

then we write f (n) ∈ Ω(g(n))

and we say f (n) is in Omega g(n).

Note that this is almost exactly the same as the definition of Big O
except that the "≤" has become "≥"

Ω is the Greek letter "Omega"

As with Big O classification we can see that Ω(g(n)) is actually a
class of functions. Ω(g(n)) contains all functions that grow at least as
fast as g(n) grows. We can also see that there is a hierarchy of Omega
classes, just as there is a hierarchy of Big O classes. For example,
suppose f (n) ∈ Ω(n3). This means "growth-rate of f (n)" ≥ "growth-
rate of n3". But since "growth-rate of n3" ≥ "growth rate of n2", we can
conclude that "growth rate of f (n)" ≥ "growth rate of n2", which is
equivalent to saying that f (n) ∈ Ω(n2).

In fact if f (n) ∈ Ω(nk) then f (n) ∈ Ω(ni) ∀ i ∈ {0, 1, . . . , k}. Recall the related result for Big O:

if f (n) ∈ O(nk)
then f (n) ∈ O(ni) ∀ i ≥ k.

When determining the Big O classification for f (n) we try to find
the smallest function g(n) such that f (n) ∈ O(g(n)). Conversely,
when determining the classification for f (n) we try to find the largest
function g(n) such that f (n) ∈ Ω(g(n)).

Example:

Let f (n) = 0.0001 ∗ n2 + (106) ∗ n + 3

We know that f (n) ∈ O(n2).

It’s also very easy to see that f (n) ∈ Ω(n2) ... we can let c = 0.0001
and it is immediately clear that f (n) ≥ c ∗ n2 ∀ n ≥ 0 .



omega and theta classification 3

Now is it possible that f (n) ∈ Ω(n3) ?

If this were true, then there would exist a value n0 and a positive
constant c such that

f (n) ≥ c ∗ n3 ∀n ≥ n0

ie.
0.0001 ∗ n2 + (106) ∗ n + 3 ≥ c ∗ n3

3 ≥ n ∗ (c ∗ n2 − 0.0001 ∗ n− 106)

but we can easily see that this is impossible: even if c is very small,
as n gets large there will come a point beyond which c ∗ n2 − 0.0001 ∗
n− 106 is ≥ 1 so n ∗ (c ∗ n2 − 0.0001 ∗ n− 106) ≥ n, which would give
3 ≥ n ∀n ≥ n0 ... which is not possible.

Thus f (n) /∈ Ω(n3).

This example illustrates a useful fact: if f (n) is a polynomial, then
the Big O class and the Ω class for f (n) are identical.

But this is not always the case. For example, consider this algo-
rithm:

A(n):

if n % 2 == 0:

for i = 1..n^2:

print ’*’

else:

for i = 1..n:

print ’*’

Let TA(n) be the time required to execute A(n). If you plot TA(n)
for n = 1, 2, 3, ... you will see that it has a zig-zag shape. The tops of
the zigs occur when n is even, and they grow at the same rate as n2. It
is easy to see that TA(n) ∈ O(n2) . However, the bottoms of the zags,
which occur when n is odd, do not show this behaviour - they grow at
the same rate as n.

Referring back to our definitions we are now able to say that
TA(n) ∈ O(n2) and also TA(n) ∈ Ω(n) ... and neither of these can
be improved: there is no lower Big O class for TA(n) and no higher Ω
class for TA(n).

This example demonstrates that an algorithm’s Big O class may be
different from its Ω class.



omega and theta classification 4

Theta Classification

If we can show an algorithm’s complexity is in O(g(n)) and in
Ω(g(n)) then we get very excited - it means that g(n) gives both an
upper and a lower bound on the growth-rate of the time required by
the algorithm. Basically it means we know exactly how fast the algo-
rithm’s time requirement grows. This is so amazingly wonderful that
we give it a special name:

Definition: If f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n)), we write

f (n) ∈ Θ(g(n))

and we say f (n) is in Theta g(n).

Θ is the upper-case Greek letter "Theta".

From what we have seen earlier you should have no trouble prov-
ing that if f (n) = at ∗ nt + · · · + a1 ∗ n + a0 is a polynomial with
at > 0 then

f (n) ∈ Θ(nt)


	Introduction
	Combinations of Functions
	Omega Classification
	Theta Classification

