Omega and Theta Classification
Robin Dawes
February 16, 2021

N Hows the importance of the (2 and @ classification for establish-
2& ing deeper understanding of the performance of algorithms.

Introduction

Bic O crassIFIcATION is all about putting an upper bound on the
growth-rate of a function (typically a function that describes the run-
ning time of an algorithm). This is just the first step into the study

of algorithmic complexity - there are several other ways of classify
functions based on the time and/or space they use. Two of these are of
particular interest to us in our exploration of data structures: Omega
() Classification and Theta (®) Classification.

Combinations of Functions

If fi(n) € O(g1(n)) , and fo(n) € O(g2(n))
then fi(n) + fo(n) € O(max(g1(n),g2(n)))

and fi(n) * f2(n) € O(81(n) * g2(n))

Omega Classification

Bic O cLassIFICATION gives us an upper bound on the growth-rate
of a function but it doesn't tell us anything about a lower bound on the
growth-rate.

Your first reaction to this observation might well be "Why would
we care about a lower bound on the growth-rate? We use this com-
putational complexity stuff to measure the worst-case running time
of an algorithm ... and for worst-case analysis, all we need is an upper
bound."

OMEGA AND THETA CLASSIFICATION 2

Before we explain why lower-bound analysis is important, we will
define exactly what we mean by it and how it works.

DeriNniTION: Let f(n) and g(n) be functions. If there exist constants
ng and ¢ with ¢ > 0 such that

then we write f (Tl) c Q(g(n)) Q) is the Greek letter "Omega"
and we say f(n) is in OMEGA g(n).

Note that this is almost exactly the same as the definition of Big O
except that the "<" has become ">"

As with Big O classification we can see that }(g(n)) is actually a
class of functions. ()(g(n)) contains all functions that grow at least as
fast as g(n) grows. We can also see that there is a hierarchy of Omega
classes, just as there is a hierarchy of Big O classes. For example,
suppose f(n) € Q(n®). This means "growth-rate of f(n)" > "growth-

3" But since "growth-rate of #n3" > "growth rate of n?", we can

2n

rate of n
conclude that "growth rate of f(n)" > "growth rate of n=", which is

equivalent to saying that f(1n) € Q(n?).
In fact iff(n) € Q(i’lk) then f(n) € Q(ni) Vie {O, 1,... ,k}. Recall the related result for Big O:

if f(n) € O(nk)

When determining the Big O classification for f(n) we try to find then f(n) € O(n) Vi > k.

the smallest function g(n) such that f(n) € O(g(n)). Conversely,
when determining the classification for f (1) we try to find the largest
function g(n) such that f(n) € Q(g(n)).

ExamPLE:
Let f(n) = 0.0001 * n% 4 (10°) x n + 3
We know that f(n) € O(n?).

It’s also very easy to see that f(n) € Q(n?) ... we can let c = 0.0001
and it is immediately clear that f(n) > cxn?> Vn>0.

OMEGA AND THETA CLASSIFICATION

Now is it possible that f(1n) € Q(n?) ?
If this were true, then there would exist a value 1 and a positive
constant ¢ such that
f(n) > cxn® Vn > ng
ie.
0.0001 * 1% 4 (10°) % n +3 > ¢ * n®
3> nx* (c*n? —0.0001 * n — 10°)

but we can easily see that this is impossible: even if c is very small,
as n gets large there will come a point beyond which ¢ * n? — 0.0001 *
n —10%is > 150 n * (c * n> — 0.0001 * n — 10%) > n, which would give
3 >n Vn > ng ... which is not possible.

Thus f(n) ¢ Q(n3).

This example illustrates a useful fact: if f(n) is a polynomial, then
the Big O class and the Q) class for f(n) are identical.

But this is not always the case. For example, consider this algo-

rithm:
A(n):
ifn%s2==0:
for i = 1..n"2:
print ’'x’
else:

for i = 1..n:

’

print 'x

Let T4 (n) be the time required to execute A(n). If you plot T4 ()
forn = 1,2,3, ... you will see that it has a zig-zag shape. The tops of
the zigs occur when 7 is even, and they grow at the same rate as n%. It
is easy to see that T4 (1) € O(n?) . However, the bottoms of the zags,
which occur when 7 is odd, do not show this behaviour - they grow at
the same rate as n.

Referring back to our definitions we are now able to say that
Ta(n) € O(n?) and also T4 (n) € Q(n) ... and neither of these can
be improved: there is no lower Big O class for T4 (n) and no higher Q)
class for T4 (n).

This example demonstrates that an algorithm’s Big O class may be
different from its () class.

3

Theta Classification

Ir we cAN sHOW an algorithm’s complexity is in O(g(n)) and in
Q(g(n)) then we get very excited - it means that ¢(n) gives both an
upper and a lower bound on the growth-rate of the time required by
the algorithm. Basically it means we know exactly how fast the algo-
rithm's time requirement grows. This is so amazingly wonderful that
we give it a special name:

OMEGA AND THETA CLASSIFICATION 4

Derinttion: If f(n) € O(g(n)) and f(n) € Q(g(n)), we write

f(n) € ©(g(n))

and we say f(n) is in THETA g(n).

O is the upper-case Greek letter "Theta".

From what we have seen earlier you should have no trouble prov-
ing thatif f(n) = agxn' +--- +ay; xn+ag isa polynomial with
a; > 0 then

f(n) € ©(n")

	Introduction
	Combinations of Functions
	Omega Classification
	Theta Classification

