
Much Ado About Theta
Robin Dawes
February 16, 2021

I
ntroduces and explores the idea of establishing the complexity
of a problem, as opposed to the complexity of an algorithm.
This powerful idea is crucial to our quest for finding optimal

data structures with which to implement our algorithms.

.

Complexity of Problems

We have discussed the Θ notation as applied to bounding the
growth-rate of the time required for an algorithm. That’s a power-
ful tool, but the real strength of the Ω and Θ notations lies in using
them to classify problems.

What would it mean to say that a problem P has a lower bound
f (n) on its complexity? It would mean that we can prove that every
possible algorithm that solves P is in Ω(f (n)).

How can we do that? We would have to prove the statement not
only for all known algorithms that solve P, but also all algorithms that
might be discovered in the future that solve this problem.

We can do this by making some simple assumptions about the com-
puter architecture - basically that we are only considering sequential
(non-parallel) machines, with constant-time arithmetic operations and
a random-access memory. This rules out possible breakthroughs

such as effective quantum computing,
hyperspace or time-travel.Within these constraints, we can see immediately that any problem

that requires reading n input values must be in Ω(n). This is kind of
trivial but it is often the best we can do. It’s worth pointing out that
sometimes we ignore the input phase of an algorithm - the best exam-
ple is binary search, which we always describe as being in O(log n).
Obviously this is only true if we ignore the time required to input
(and sort) the set of n values.

much ado about theta 2

Sometimes we can do better than the trivial lower bound. For ex-
ample, suppose a certain problem requires multiplying all pairs of

values in a set of size n. There are about
n2

2
such pairs so any sequen-

tial algorithm that computes the necessary products must be in Ω(n2).

Knowing the classification of a problem can help us in our quest to
find an optimal algorithm for the problem. And lest we forget, that is the ultimate

goal of our study of data structures.

For example suppose we can show that a particular problem is
in Ω(n2) but the best algorithm we have is in O(n3). There are two
avenues for exploration and research. If we can show that the problem
is in Ω(n3) then we know the problem is in Θ(n3) and the known
algorithm has optimal complexity. On the other hand, if we find an
O(n2) algorithm for this problem then we can say the problem is in
Θ(n2) - every algorithm for this problem has running time that grows
at least as fast as n2 grows (because of the Ω(n2) lower bound), and
we have found an algorithm that grows exactly that fast. So n2 is both
a lower and upper bound on the complexity of solving this problem.

There is a famous and deeply studied problem that must be men-
tioned here: matrix multiplication. Given two n × n matrices, we
wish to compute their product. Since we have to input 2n2 values this
problem is clearly in Ω(n2) . The naïve matrix multiplication algo-
rithm runs in O(n3) time. For decades people have been finding faster
and faster algorithms for this problem, but its true complexity has yet
to be determined - nobody has found an algorithm that runs in O(n2)

time.

The first major breakthrough on this
problem was made by Volker Strassen
in 1969.

Example: Let’s look at a simple example of determining the classi-
fication of a problem. The problem we will look at is evaluating a
polynomial

f (x) = at ∗ xn + at−1 ∗ xn−1 + · · ·+ a1 ∗ x + a0

First we can observe that any algorithm that solves this must at the
very least read or otherwise receive the values of x and all n of the
ai coefficients. Thus we can easily see that every algorithm for this
problem must be in Ω(n).

much ado about theta 3

Consider the simple algorithm I will call BFI_Poly:

BFI_Poly(x,a[n] ... a[0]):

value = a[0]

for i = 1 .. n:

power = 1

for j = 1 .. i:

power *= x

value += a[i]*power

return value

BFI_Poly() runs in time O(n2). You should verify this.

So we have a problem with a lower bound of Ω(n), and an algo-
rithm that is in O(n2) ... can we either increase the lower bound, or
decrease the upper bound?

It turns out that for this problem we can decrease the upper bound
by using a better algorithm - namely, Horner’s Rule: If you are not familiar with Horner’s

algorithm you should make sure you
understand it. It is a perfect example of
computational optimization.Horners_Poly(x,a[n] ... a[0]):

value = a[n]

for i = n-1 .. 0:

value = value*x + a[i]

return value

You should be able to verify that Horners_Poly runs in O(n) time. As an exercise, can you find an easy way
to modify BFI_Poly so that it also runs
in O(n) time?Now we are in clover - the upper bound on our algorithm exactly

matches the lower bound on the problem. We can now say that the
problem is in Θ(n). This really is very good news - it means we have
found an algorithm for this problem that cannot be beat!

Well ... sort of.

It means our algorithm belongs to the lowest possible complex-
ity class for solving this problem. There may be another algorithm
with the same complexity and a lower value of c, the constant multi-
plier. This is what we see when we compare Mergesort and Quick-
sort: they have the same O(n log n) complexity, but Quicksort is faster
in general because it has a lower constant multiplier.

Yes, I know that Quicksort has worst-
case O(n2) complexity the way it is
normally implemented. It is actually
possible to modify Quicksort so that you
can guarantee O(n log n) performance
but hardly anyone bothers because the
pathological situations that give rise to
the O(n2) performance are very rare.

much ado about theta 4

Comparison-Based Sorting

The information in this section may be considered as optional ...
but I strongly recommend learning it!

The study of Θ classification has led to an incredibly important
result in complexity theory with direct implications for algorithm
and data structure design: comparison-based sorting of a set is in
Θ(n log n) where n is the size of the set. In other words, there cannot
be any sorting algorithm based on comparing elements of the set to
each other that is guaranteed to run in less than Ω(n log n) time.

Despite what you may read on the
internet about miraculous sorting
algorithms that always run in O(n) time,
they don’t exist.

A word about comparison-based sorting: most of the sorting algo-
rithms we encounter are in this category. Bubble-sort for example,
(which we all know we should never use in most circumstances
because it runs in O(n2) time) is based on repeatedly comparing
two consecutive values in the array and swapping them if required.
Merge-sort boils down to a sequence of ever-larger merges, each of
which consists of repeated comparisons between elements of the set.
Quick Sort uses comparisons between values to partition the set into
"small values" and "large values", then sorts the two subsets recur-
sively. Each of these can be expressed at the most abstract level as:

while (not sorted):

compare two elements of the set

based on the result of the comparison, do some stuff

So the question is: if we have a sorting algorithm that fits this pat-
tern, can we put a lower bound on the number of comparisons we
must do? It turns out that we can!

We can visualize the execution of such an algorithm as a binary
tree (note that this does not mean that the algorithm involves building
a tree ... in this analysis the tree is a representational device for the
execution of the algorithm). The root of the tree represents the first
comparison. There are two possible outcomes, each leading to another
comparison ... and each of those leads to two more, etc., until the set is
sorted.

This tree has to include every possible sequence of comparisons
that the algorithm might use to complete the sorting operation (ie.
every possible execution trace of the algorithm). Every possible initial
permutation of the set of n values will follow a different sequence of
comparisons to become sorted, so each leaf of this tree represents the
termination of the algorithm for a different initial permutation. Since

much ado about theta 5

a set of n values has n! permutations, the execution tree must have n!
leaves.

Now we are almost done. We can use the number of levels of the
tree to put a lower bound on the running time of the algorithm. (For
example, if the tree has 12 levels then there is some leaf that is only
reached after 11 comparisons.) If we actually built this tree for bubble-
sort we would see that it has about c ∗ n2 levels for some constant c,
and if we built the execution trees for merge-sort we would see that
the tree has about d ∗ n ∗ log n levels for some constant d.

But can we say anything about the minimum height of a binary tree
with n! leaves? If we think about this for a moment, we can see that if
a binary tree has X leaves at the bottom level, then the level above this

has ≤ X
2

vertices, the one above that has ≤ X
4

vertices, and so on up to
the root. In other words the number of levels is at least log2 X.

So the execution tree for any possible comparison-based sorting
algorithm must have at least log2(n!) levels. This means that there is at
least one permutation that requires at least log2 n comparisons.

Because of the way logs work we get

log2(n!) = log2(1 ∗ 2 ∗ · · · ∗ n
2
∗ (n

2
+ 1) ∗ · · · ∗ n)

= log2(1) + log2(2) + · · ·+ log2(
n
2
) + log2(

n
2
+ 1) + · · ·+ log2(n)

≥ log2(
n
2
) + log2(

n
2
+ 1) + · · ·+ log2(n)

≥ log2(
n
2
) + log2(

n
2
) + · · ·+ log2(

n
2
)

≥ n
2

log2(
n
2
)

=
n
2
(log2(n)− log2(2))

=
n
2
(log2(n)− 1)

which we now know means that we can write

log2(n!) ∈ Ω(n log n)

And there it is! The execution tree for any comparison-based sort
algorithm must have at least c ∗ (n log n) levels for some constant c,
and so every comparison-based sorting algorithm that can success-
fully sort all possible initial permutations is in Ω(n log n) .

much ado about theta 6

End of the sorting story? Not quite. If we place restrictions on the Stories never end!

initial permutation - so that not all initial permutations are possible -
then we may be able to get a lower complexity because the execution
tree does not need as many leaves. Also, there do exist sorting algo-
rithms that are not comparison-based - under some circumstances
these can run faster than O(n log n) time. But for general purpose,
no-restrictions sorting, the result holds. Congratulations if you made it to the

end of this section . . . it’s a result that
crops up over and over in the study of
algorithmic efficiency. Knowing why it
is true puts you on very solid ground.

	Complexity of Problems
	Comparison-Based Sorting

