
Stack to the Future
Robin Dawes
February 16, 2021

I
ntroduces two friends we will keep for life: postfix notation,
and the stack data structure.

.

Postfix Notation

Consider the problem of evaluating an arithmetic expression such
as

3 + 4 ∗ 7 + 8 ∗ (3− 1)

Most people in North America have been taught that parentheses have
highest precedence, followed by exponentiation, then multiplication
and division, then addition and subtraction, so the expression above
evaluates to

3 + 28 + 16 = 47

But these precedence rules are completely arbitrary. For example,
we could keep the rule about parentheses but do everything else in
simple left-to-right order ... which would give 114 ... or right-to-left
order ... which would give 103 ... or give addition higher precedence
than multiplication ... which would give 210. Assuming I have done the arithmetic

properly!

The notation we have used here to write down the expression is
called infix notation because the operators (*, +, etc) are placed in
between the operands (3, 4, 7, etc.)

In order to evaluate an infix expression correctly we need to know
exactly what rules of precedence were used by the person who created
the expression. Wouldn’t it be wonderful if there were a universal
way to represent an expression so that no matter what rules of prece-
dence are in use, the method of evaluating the expression is always
the same?

There is! It is called postfix notation, and it was invented in 1924
by Jan Łukasiewicz ... because he was Polish, this is sometimes called

Polish speakers tell me that the Ł is
pronounced somewhat like an English
"W", the "s" is like English "sh", the
"w" is like English "v", and the "cz" is
like "tch" . . . and the stress is on the
second syllable. So, something like
"WuKASHavitch" ... which is guaran-
teed to be closer than "LucaSAYwicks"
which is what I was introduced to as a
student.

Polish Postfix Notation. In postfix notation operators come after
their operands, so "3 * 4" (infix) becomes "3 4 *" (postfix).

stack to the future 2

The expression we started with :

3 + 4 ∗ 7 + 8 ∗ (3− 1)

can be written as
3 4 7 ∗ + 8 3 1 − ∗ +

We can evaluate this in simple left-to-right order ... we keep reading
until we hit an operator (the *) and then we apply it to the two num-
bers just before it: 4 * 7 = 28, and we put the result in place where the
4 7 * was, so now the expression is

3 28 + 8 3 1 − ∗ +

The next thing we see is the +, which we apply to the numbers just in
front of it (3 and 28) and put the result back in the expression, giving

31 8 3 1 − ∗ +

The next operator we find is -, which we apply to 3 1. The expression
is now

31 8 2 ∗ +

The next operator is *, applied to the 8 2. This gives

31 16 +

We apply the + to the numbers before it, giving a final result of 47
... which is exactly the result we expect from the original expression
using standard rules of precedence ... but note that we did not need to
know those precedence rules! Once we have the expression in postfix
form we just evaluate from left to right.

But something magical happened there - I just pulled the postfix
version of the expression out of thin air. Can we find a way to convert
any infix expression to an equivalent postfix expression?

There are efficient algorithms for doing that but we aren’t ready to
look at them yet. For now, we can simply build the postfix expression
one piece at a time ... for example, we can look at

3 + 4 ∗ 7 + 8 ∗ (3− 1)

and see the parenthesized part "(3 - 1)" which we can immediately
write as "3 1 -". Now that this is taken care of we can work on the next
level of precedence: multiplication and division. We see that "4 * 7"
will become "4 7 *", and that the "8 *" combines with the "3 1 -" to give
"8 3 1 - *".

stack to the future 3

Now all we have left to deal with are the additions. We can resolve
these in different ways, but perhaps the simplest is to put the first "+"
right after the things it applies to (the "3" and the "4 7 *") and the
second "+" after the "8 3 1 - *"

An infix express can often be translated into postfix notation in
different ways. The original expression could also be translated into
postfix notation as

3 4 7 ∗ 8 3 1 − ∗ + +

It is worth noting that postfix notation is very important in com-
puter science because it gives a good model of how arithmetic is actu-
ally carried out in a computer. When we write a high-level statement
like C = A + B it gets translated into assembly language sort of like
this:

load the contents of address A into a CPU register

load the contents of address B into another CPU register

add the contents of those two registers and store the result in another CPU register

copy that register to address C

In other words the addition is really carried out in a postfix way: we
identify the operands, then execute the operation on them.

Evaluating Postfix Expressions

Let’s consider the problem of evaluating a postfix expression. We can
do it by traversing the expression from left to right. We "hang on to"
the values, and whenever we encounter an operator we apply it to the
two most recent values, then replace those values with the result of
the operation we just performed.

We can visualize this process as making a pile of the values, placing
each new value on top of the existing pile. Whenever we find an oper-
ator we remove the top value and the next value from the pile, apply
the operator to them, then put the result on top of the pile.

stack to the future 4

Introducing the Stack

The data structure we use to make this work is called a stack. The classic visualization is a stack of
plates - or pancakes. With a stack of
pancakes, we can add new pancakes to
the top of the stack, and we can remove
the pancake currently on top - and that’s
pretty much all we can do. But for our
problem, that is all we need.

A stack is our first example of an Abstract Data Type: we specify
the operations we need to be able to perform on the data we will store,
but we do not specify the details of the implementation. Of course
when we actually write code we do need to choose a specific imple-
mentation, and the choice we make will often have significant impact
on the efficiency of our program. We’ll talk about implementation
later.

A stack must provide (at least) three operations:

- push(x) - add the value x to the top of the stack

- pop() - remove the most recently added value, and return it.
Raises an error if the stack is empty when pop() is called

- isEmpty() - return True if there are no values in the stack, and
False otherwise

Sometimes other operations are also defined, such as

- peek() - return the top value on the stack without popping it.
Raises an error if the stack is empty when peek() is called

- count() - return the number of values on the stack

These are optional because they can be implemented using just push,
pop and isEmpty.

A stack is often described as a LIFO (Last In First Out) data struc-
ture: the most recently added (pushed) value is the first one removed
(popped).

At this point we will imagine that we have implemented a Stack
class and that we can create a stack with a statement such as

S = new Stack()

Then the operations listed above become methods attached to the
stack we create.

stack to the future 5

Applications

Stacks are widely used in industry - most compilers and pro-
gramming environments use a stack to handle nested function calls
(sometimes called the "execution stack" or the "call stack"). Adobe
Postscript is heavily stack-based. IBM, Apple and NASA all use a
language called Forth which is completely stack-based.

One of the appeals of the stack data structure is that it is very sim-
ple and can be implemented in limited memory space, yet it is very
versatile.

It’s a very interesting exercise (and a useful one!) to think about
how we can write stack-based algorithms for practical tasks.

For example, how might we create an algorithm that sorts the
values in a stack, using only the defined operations push, pop and
isEmpty?

To get a start on this, consider this algorithm. It takes a stack of
unique numbers as its argument and returns the stack with the small-
est value moved to the top of the stack, and all the other values in their
original order. Note that it creates another (temporary) stack, but uses
no other data structures.

stack to the future 6

def Min_to_Top(S): # S is a stack of numbers, all different

if S.isEmpty():

return S

else:

temp = new Stack()

min = S.pop()

temp.push(min)

while not S.isEmpty():

x = S.pop()

if x < min:

min = x

temp.push(x)

min is now the smallest value

all values have been moved to temp

S is empty

while not temp.isEmpty():

x = temp.pop()

if x != min:

S.push(x)

S.push(min)

return S

Work through this algorithm to make sure you see how it works.
Then modify it so that it will work on sets of numbers that may con-
tain duplicates. Then write a sort algorithm for a stack that uses
Min_to_Top. Your algorithm will most likely be in O(n2) where n is
the size of the stack. Can you write an O(n log n) stack-based sorting
algorithm?

stack to the future 7

Using a Stack to Evaluate a Postfix Expression

Now back to our original problem - evaluating postfix expres-
sions. Here is a stack-based algorithm to evaluate a postfix expression:

Let E be a string that represents an expression in postfix form

Assume E has a "next" method that returns the next token in E

S = new Stack()

while we haven’t processed all of E:

x = E.next()

if x is a value:

S.push(x)

else:

x is an operator

let n be the number of values required for x (usually 2)

pop the top n values from S

y = the result of applying operator x to the values just popped off S

S.push(y)

return S.pop()

This algorithm will fail if E is not well-formed. As an exercise, im-
prove the algorithm by using the isEmpty()method to avoid prob-
lems.

stack to the future 8

Stack Practice

Stack exercises:

1. Write an algorithm that will move the top value on one stack to
the top of another stack.

2. Write an algorithm that starts with a stack containing n inte-
gers and finishes with the same integers in the same stack, but with
the value that was on the bottom of the stack moved to the top, and
all other values moved down one position. For example if the stack

initially looks like this:


4
17
9
23



then it should finish like this:


23
4

17
9


You may use another temporary stack in your algorithm.

3. Write an algorithm that takes as input the integers {1, 2, ..., n}
in some arrangement on two stacks, and a target arrangement of the
same integers on the same two stacks. Using only the methods cre-
ated in exercises 1 and 2, rearrange the integers to match the target
arrangement.

For example suppose n = 3,

start arrangement is

[
1
2

]
on the first stack and [3] on the second

stack,

target arrangement is

 1
3
2

 on the first stack and nothing on the

second stack.

stack to the future 9

One solution is

1. move the top of Stack 1 to Stack 2 (as in Exercise 1)

2. move the bottom of Stack 2 to the top of Stack 2 (as in Exercise
2)

3. move the top of Stack 2 to the top of Stack 1

4. move the top of Stack 2 to the top of Stack 1

It’s not hard to create a generic algorithm that will transform any
initial arrangement to any target arrangement ... but creating an al-
gorithm that performs the transformation in the smallest number of
steps is much more challenging.

For this exercise you are allowed to assume there are pre-defined
operations that let you examine and compare the current arrangement
to the target arrangement.

	Postfix
	Evaluating Postfix
	Introducing the Stack
	Stacks in the Real World
	Putting the Stack to Work
	Exercises

