Binary Trees - the Beginning
Robin Dawes
February 17, 2021

QF EGINs our deep and (hopefully) rewarding study of the prop-

g o erties and applications of binary trees - a topic of essential
¢ importance in computing.

Planting the Seeds

IN THIS INTRODUCTION TO BINARY TREES | will assume you are familiar
with trees as defined in CISC-203.

DEFINITION: a ROOTED TREE is a tree in which one vertex is identified
as the root. The edges may or may not be directed. If so, either all
edges are oriented with their heads pointing towards the root, or all
edges are oriented with their heads pointing away from the root.

When the edges are oriented away from the root, the set of vertices

{y | Fedge (x,y;} are called the cHILDREN of x. We call x the PARENT
of its children. Vertices with the same parent are called siLINGS.

By convention, an empty tree is considered to be a rooted tree.

DeriniTiON: A Binary TREE is a rooted tree in which each vertex has
at most two children. The children of a vertex (if any) are labelled as
the LEFT cHILD and the rRiGHT cHILD. If a vertex has only one child,
that child can be either the left child or the right child.

Binary trees can also be defined recursively:

DerINITION: A rooted tree T is a BINARY TREE if:
T is an empty tree, or

T consists of a root vertex with a left subtree and a right subtree, each
of which is a binary tree

This recursive definition prefigures the pattern of most algorithms
we use on this data structure, as we will see as we go forward.

This may seem silly but it actually
simplifies some of our later definitions.



BINARY TREES - THE BEGINNING 2

There are at least two options for implementing binary trees. For
now we will focus on the obvious method: objects with pointers.

We can use two classes to define binary trees: Binary_Tree_Vertex It’s actually possible to everything with
just one class ... but I've always done it

and Binary_Tree. with two! YMMV

A Binary_TREe_VERTEx object needs the following attributes:
- value ... which could be a single value, a collection or list of
information, or a key value and associated data, etc.

- left_child ... in a typed language, this is a pointer to a Bi-
NARY_TREE_VERTEX object

- right_child ... same

and may also have pointers to the vertex’s siblings, its parent, the root
of the tree, etc.

A Binary_TREE object needs just one attribute:

- root ... in a typed language, this is a pointer to a BinarRY_TREE_VERTEX
object

and may also have attributes such as "height" and "number_of_vertices"

We will adopt the common "<object>.<attribute>" notation ... so if
T is a Binary_TREE object, we will refer to T’s root as T.root

Similarly if v is a BINaArRY_TREE_VERTEX object, we will refer to
v.value, vleft_child and v.right_child.



BINARY TREES - THE BEGINNING 3

Binary Tree Traversals

ONE oF THE THINGS we do frequently with binary trees is traverse
them, which means "visit each vertex of the tree". There are four
popular methods for traversing binary trees. We will illustrate them
on this tree, which has a token stored in each vertex.

‘\

/\
/\ /\

/\ c

IN-ORDER TRAVERSAL

The basic idea of In-Order Traversal is to explore the left subtree,
then look at the current vertex, then explore the right subtree. We can
write this recursively:

In_Order(v): # v is a vertex in a binary tree
if v == nil:
return
else:

In_Order(v.left_child)
print v.value
In_Order(v.right_child)

If we apply this to the tree shown above, the result is

4 + 3 x 10 — 2 % 8

Well that’s interesting - this creates an arithmetic expression in
standard infix form!



BINARY TREES - THE BEGINNING 4

PRrE-ORDER TRAVERSAL

The basic idea here is to look at the current vertex, then explore
its left subtree, then explore its right subtree. In pseudo-code, the
recursive form of this is:

Pre_Order(v): # v is a vertex in a binary tree
if v == nil:
return
else:
print v.value
Pre_Order(v.left_child)
Pre_Order(v.right_child)

If we apply this to the tree shown above, the result is

- + 4 x 310 x 28

In the notes about Stacks we looked at PosTFIX NOTATION but we
didn’t spend any time talking about PREFIX NOTATION for arithmetic
expressions ... but it’s not complicated. In postfix notation each opera-
tor follows its operands ... but in prefix notation each operator precedes
its operands. The expression shown above is correct prefix notation
for the expression we are working on. It would be interpreted (by a
talking computer) as ... "Oh a minus sign. I need two numbers. Now I
have a plus sign - I need two numbers for that. There’s a 4 - that’s one
number for the addition. Now I have a multiplication sign - I need two
numbers for that. There’s a 3. There’s a 10. I have the two numbers
for the multiplication: 3*10 = 30. Now I have the second number for
the addition: 4 + 30 = 34. I still need a second number for the subtrac-
tion. I see a multiplication - I need two numbers. There’s a 2. There’s
an 8. Now I can compute 2*8 = 16. 16 is the second number I need
for the subtraction so I can compute 34 - 16 = 18. Now I need a cool
refreshing beverage."

We could also process prefix expressions in a right-to-left order -
this would be completely analogous to processing a postfix expression
from left-to-right: we would encounter the operands and then the
operator.

We talked previously about how postfix notation is deeply related
to the way expressions are actually evaluated at the assembly lan-
guage level in a computer (first we load the values into registers, then



BINARY TREES - THE BEGINNING

we apply the operation to them). By contrast, prefix notation is closely
related to the way we express method calls in high level program-
ming. For example we might write something like

compute_triangle_area(x, power(a,max(b,c)), sqrt(z))

where the three arguments are the lengths of the sides of a triangle. It
is reasonable to call this prefix notation because we name each func-
tion and then list the values to which it is being applied (some of
which are the result of other function calls).

Post-ORDER TRAVERSAL

Having seen In-Order and Pre-Order it will be no surprise that the
third traversal algorithm is called Post-Order Traversal. As you can
probably guess, the idea here is to explore the left subtree, then the
right subtree, then the current vertex. As a recursive method it looks
like this:

Post_Order(v): # v is a vertex in a binary tree
if v == nil:
return
else:
Post_Order(v.left_child)
Post_Order(v.right_child)
print v.value

If we apply this to the tree shown above, the result is

4310 « 4+ 28 x —

which we can see is a correct postfix version of the arithmetic ex-
pression we are working with.

Now this is pretty amazing! We were able to store the expression
in a simple data structure that let us extract all three ways of writ-
ing the expression (infix, prefix and postfix) using simple traversal
algorithms.

You might want to think about how to implement these binary tree Here’s a hint: one method is to use a

traversal algorithms non-recursively. stack as well as the tree.



BINARY TREES - THE BEGINNING

BrREADTH-FIRST TRAVERSAL

The fourth traversal algorithm that is widely used is called Breadth-
First Traversal - we will look at it in some detail in other notes, but
for now we can give an explanation of the idea: explore the tree one
level at a time - so first we visit the root, then its children, then their
children, then theirs, and so on down to the bottom of the tree.

Applying this to our tree might give
— + x4 % 28310

The ambiguity comes from the lack of any rule about the order in
which the vertices on each level are to be visited.

This is not as useful in terms of evaluating the expression be-
cause it is difficult to match the operations up with the operands -
but breadth-first traversal has many other applications.

Complexity of In-Order, Pre-Order and Post-Order Traversals

LET’s coNsIDER the complexity of In-Order, Pre-Order and Post-
Order. If we let nn be the number of vertices in the binary tree, you
can see that in each of the three algorithms each vertex gets visited
exactly once. Furthermore the event that brings us to a vertex, (ie.
executing a recursive call in any one of the three algorithms), is ex-
actly equivalent to following an edge of the tree. Since we know there
are n — 1 edges in a tree with n vertices (refer to the CISC-203 notes),
the number of such operations is n — 1. Referring to the algorithms
given above we see that visiting a vertex takes O(1) time. Thus we see
that no matter what the actual structure of the tree (ie. whether it has
many levels or few levels), these algorithms all take O(n) time.

In case you don’t remember (or didn’t like) the proof from CISC-
203 that the tree has n — 1 edges, here is a different one:

THEOREM: A binary tree with n vertices has n — 1 edges.

Proor: Recall that in a rooted tree, every edge joins a parent to a child,
and every vertex except the root has one edge that connects it to its
parent. Thus there are n — 1 edges joining vertices to their parents,
and there aren’t any other edges ... so the number of edges is n — 1.

»



	Planting the Seed
	Traversals of Binary Trees
	Complexity

