
Binary Search Trees (Part 1)
Robin Dawes
February 17, 2021

I
ntroduces one of the all-time classic problems: searching a
set for a particular value. Binary trees are proposed as an
effective structure to support algorithms to solve this and

related problems.

.

Binary Search Trees (aka Lexically Ordered Binary Trees)

Now we turn to the most popular application of binary trees ... one
that is found throughout computing.

Suppose we have a collection S of values and we want to perform
the search operation on S. This operation comes in two flavours:

- Given x, is x in S?

- Given x, what is the location of x in S?

As always in our study of data structures, our concern is choosing
the best structure in which to store S to facilitate answering these
questions.

Most often we are interested in the second question because we
want to do something with x, such as access or modify information
associated with x. If we are really only interested in the first question
then there are structures that are particularly suited to answering that
... as we will see later. Dramatic foreshadowing!

First let’s try to establish the complexity classification of the search
problem. To do so we will be a bit specific about the types of algo-
rithm we will consider: we will focus on comparison-based algorithms
- ie. algorithms that are based on comparing the target value x to ele-
ments of S.

It may seem unlikely that there can be a
search algorithm that does not compare
x to elements of S ... but we’ll let that
question slide for now.



binary search trees (part 1) 2

Suppose we have a comparison-based search algorithm A that is
guaranteed to find the correct answer for a target value x and a set S.
We can think of the steps this algorithm follows as:

compare x to some element of S

based on the comparison result ...

compare x to some other element of S

based on the comparison result ...

compare x to some other element of S

etc.

until we either find the value x or determine that it cannot be in S.

We can illustrate the set of all possible execution traces of A with
an execution tree. This tree is specific to the algorithm A. To establish
our lower bound on comparison-based searching we will have to
build an argument that applies to the execution trees of all possible
algorithms.

You may remember this approach from
our study of the Ω classification of
comparison-based sorting.

Note the outcomes at the bottom of the figure. Different sequences
of comparisons can lead to the same outcome, which is demonstrated
in the figure by the repeated presence of "x is in Position a" as an
outcome. Similarly, the outcome "x is not in the set" may be the result
of many possible sequences of comparisons that the algorithm might
execute. The figure may give the impression that all the potential
comparison sequences have the same length - this is not necessarily
the case. If an early comparison actually finds x (or determines that
x is not present) it is reasonable to allow the algorithm to stop at that
point.

Each execution of the algorithm (for a specific target value x and set
S) will follow a path down through this execution tree until it either
finds x or determines that it is not there. Note that the only way to be
absolutely sure that x is in S is to actually find an element of S that
equals x. Thus the execution tree must contain at least as many "com-
parison nodes" as there are elements of S - if there is some element of
S that is never compared to x in any execution of the algorithm, then
we cannot always know for sure whether or not that element equals
x. (We can think of an evil adversary who knows our algorithm and
knows we are searching for x - the adversary arranges things so that x
is placed in the element of S that our algorithm doesn’t look at - so we
never find x even though it is there.

If you don’t like the idea of an evil
adversary, just think of Murphy’s Law:
if we use an algorithm that never looks
at some particular element of the set,
then Murphy’s Law says that sooner or
later that’s the element that we should
have looked at.

So we know the execution tree for our algorithm A must contain
at least n comparison nodes. But each execution of A will only visit



binary search trees (part 1) 3

some of those nodes - each execution represents a path down through
the execution tree from the root to the point where the answer to the
question is known. Our important question is "What is the longest
sequence of comparisons A will ever need to complete a search?" If
we can determine this as a function of n, this will tell us that for ev-
ery value of n, there is some set of values that will require this many
comparisons to get the right answer. This gives us a lower bound
on the complexity of A. And since A is a completely unspecified
comparison-based search algorithm, it will give us a lower bound
on all comparison-based search algorithms.

Our question is equivalent to asking what the length of the longest
path is from the root to the bottom of the execution tree. This will
be different for each possible search algorithm A, but we can put a
lower bound on it. We know the execution tree for A contains at least
n comparison nodes. The top level of the tree has 1 node. The next
level has no more than 2 nodes. The level below that has no more than
4 nodes (we say "no more than" because some of the branches may be
early exits from A - for example, when x is found). Thus if there are k
levels, there are no more than

1 + 2 + 4 + · · ·+ 2k−1 =
k−1

∑
i=0

2i = 2k − 1

nodes in the tree.

This gives n ≤ 2k − 1 since we know the tree contains at least n
nodes.

From this we get k ≥ log2(n + 1) which gives k > log2 n.

So we conclude that the execution tree for every comparison-based
search algorithm has at least log2 n levels ... so no comparison-based
search algorithm can have complexity less than O(log n). In other
words, comparison-based searching is in Ω(log n).

So what does this have to do with the binary tree data structure?

We are already familiar with a structure that lets us search for x
very efficiently - our old friend the simple one-dimensional array. If
we store S in sorted order in an array, we can search S in O(log n) time
using binary (or trinary, or k-ary) search.

End of story? We already know an algorithm whose O complexity
matches the Ω classification of the problem. There’s nothing left to be
done, right?



binary search trees (part 1) 4

Well, not quite. If our set S is fixed and unchanging, a sorted array
is perfectly fine. But many applications involve sets that are modifiable
- we need to add new values and delete existing values. In these situ-
ations a sorted array is not a good choice at all: inserting or deleting
values in a sorted array takes O(n) time. It’s not much good having
a fast search algorithm if our set-update algorithms are much much
slower.

For contrast, consider storing the set in a linked list (unsorted).
Now the complexity of adding a new value is in O(1) , but searching
and deleting items are both in O(n).

The question then becomes: is there a data structure that allows
searching, adding and deleting to all be completed in O(log n) time?

The answer is yes, and of course since this discussion is lodged in
the "Binary Tree" section of the notes you will have guessed that this is
the structure. But to facilitate the search operation we need to be more
precise about how the values in S will be stored in a binary tree.

It’s actually going to take quite a bit of
hard work before we can prove we can
attain the O(log n) goal - buckle up and
hang on!

When we store information in a generic binary tree there is no
rule that says the information must be stored according to a specific
pattern or rule. However in order to use a binary tree to address the
"search" problem we enforce a simple rule for the placement of the
values in the tree: small values go to the left and large values go to the
right. We can formalize this as follows:

Definition: A binary search tree (bst) for a set S is a binary tree in
which each vertex contains an element of the data set.

The values are arranged to satisfy the following additional property:
at each vertex, all values in the left subtree are ≤ the value stored at
the vertex, and all values stored in the right subtree are > the value
stored in the vertex. Note that we use "≤" for the left subtree to ac-
commodate the possibility of having duplicate values in the tree.

A BST is a more complex structure than either a one-dimensional
array or a linked list. Why should we use it?

In order to make a case for using a BST as our structure of choice
for Search/Insert/Delete situations we need to determine the complex-
ity of algorithms for the Search, Insert and Delete operations, and then
argue that they are superior to the algorithms for the same operations
on an array or list.



binary search trees (part 1) 5

BST_Search

Because of the ordering of the values in the vertices, searching a BST
works just like binary search on a sorted array. We start at the root -
if it contains the value we want, we are done. If not, we go to the left
child or right child as appropriate.

Our design goal for implementing this data structure (and all sub-
sequent ones) is that the user - in this case, the program which is call-
ing the search function - should not need to know any details about
the implementation of the structure. For example, the user should
not need to know that the root of the tree is identified by an attribute
called "root".

In these notes I’m using a typical object-oriented language syntax
in which instances of classes possess methods which are accessed
by appending the method name to the instance name. So if T is an
instance of class Binary_Search_Tree, and all instances of this class
own a method called Search, then we can call that function on Twith
T.Search(x)where x is the value we are searching for.

We need to decide which flavour of search we are going to im-
plement ("if x is there, return True" versus "if x is there, return its
location"). We will opt for the latter since it is neither easier nor more
difficult with the BST structure. If x is in T, we return a pointer to the
vertex containing it. If x is not in T, we return a nil pointer.

Here is a simple iterative version of the binary search tree algorithm
as it might fit in a Binary_Search_Tree class.

Class Binary_Search_Tree():

#instance variable:

root : Binary_Tree_Vertex

def Search(x):

current = this.root # current is a Binary_Tree_Vertex pointer

while current != nil:

if current.value == x:

return current

elif current.value > x:

current = current.left_child

else:

current = current.right_child

return nil # x is not in the set



binary search trees (part 1) 6

If we don’t like multiple return points we can write the algorithm
like this:

def Search(x):

current = this.root

while (current != nil) && (current.value != x):

if current.value > x:

current = current.left_child

else:

current = current.right_child

return current

We can also implement the search algorithm recursively. We can
use a "wrapper" function so that the interface does not change In this Design principle: the user should not

need to know whether our algorithm is
iterative or recursive.

version, Search(x) and rec_Search(x) are both instance methods of
the Binary_Search_Tree class.

def Search(x): # this method initiates the recursion

return rec_Search(this.root,x)

def rec_Search(current,x):

if current == nil:

return nil

elif current.value == x:

return current

elif current.value > x:

return rec_Search(current.left_child,x)

else:

return rec_Search(current.right_child,x)

You should convince yourself that the iterative and recursive ver-
sions of the search algorithm do indeed achieve the same result. It is
easy to see that they have the same complexity since they visit exactly
the same sequence of vertices.

Which of the two is better? To my eye the recursive version is
marginally more elegant, but that’s debatable. The iterative version
is probably a bit more efficient - this is because (according to con-
ventional wisdom) a function call typically takes longer to execute
than an iteration of a loop. This means that even though the two al-
gorithms have the same complexity, the constant multiplier for the



binary search trees (part 1) 7

iterative version may be smaller than the constant multiplier for the
recursive version. Caveat: as I once discovered by experi-

menting in Python with recursive versus
iterative implementations of Quicksort,
it seems that recursive implementations
of some algorithms may be faster than
iterative implementations of the same
algorithms. I encourage you to con-
duct some experiments to explore this
question for yourself. Don’t always trust
conventional wisdom!

Another consideration is that it is often easier to prove correctness
of recursive algorithms because we can use simple inductive proofs.

Regardless of the difference in speed, I prefer the recursive ver-
sion. As we will see when we look at more sophisticated algorithms
for BSTs, there are times when using recursion is much, much cleaner
than using iteration.

Thinking about trees as recursive objects is a valuable exercise. Some-
times, even if the eventual goal is an iterative algorithm the best way
to get there is to start by constructing a recursive algorithm, then con-
vert the recursive calls into loops.

I noted above that the two versions of the Search algorithm for
Binary Search Trees have the same complexity ... but what is it? We’ll
defer that question for a while, but at this point we can observe that on
each iteration of the loop (or in each recursive call) we do a constant
amount of work, and the number of iterations (recursive calls) is
bounded above by the number of levels in the tree.

We can think of the Binary Search
Tree Search algorithm - either the
recursive or the iterative version - as a
modification of one of the three traversal
algorithms we explored earlier. Which
one?

BST_Insert

Let’s turn to the problem of inserting new values in the set. When
we insert a new value we need to put it in a position where we will
be able to find it when we search for it. So we can start by comparing
the new value to the root value. If it is > than the root value, we need
to put the new value in the right subtree ... because that is where
BST_Search will look for it. Similarly, if it is ≤ the root value, it needs
to go into the left subtree. And of course, capitalizing on the recursive
structure of BSTs, we conduct exactly the same decision process at
whichever of the two children we go to.

Wait a minute ... this sounds suspiciously like the Search algorithm.
It is! The main work in the Insert algorithm is finding the proper place
to add the new value, and that is almost exactly the same as Search.
The only difference is that we continue the search until we find an
empty place (ie. a nil pointer).

This means that if we find the value already present in the tree we
continue the search (since we are allowing duplicates in our set) -
thus we will inevitably reach a point where we "fall off" the tree. The



binary search trees (part 1) 8

point at which we fall off the tree is the unique proper location for the
new leaf containing the new value.

One iterative version of the algorithm looks something like this.
Note that we have to treat an empty tree as a special case because the
root value will be "nil" so we cannot compare the new value to the
root value. Also in this situation the new vertex (containing the new
value) becomes the root, whereas in all other cases it is attached as a
child of an existing vertex.

def Insert(x):

if this.root == nil:

this.root = new Binary_Tree_Vertex(x)

else:

current = this.root

done = false # declaring a Boolean variable

while not done:

if current.value >= x: # x belongs on the left side

if current.left_child == nil: # the new vertex needs to be the left child of current

current.left_child = new Binary_Tree_Vertex(x)

done = true

else: # keep going down the tree

current = current.left_child

else: # x belongs on the right side

if current.right_child == nil: # the new vertex needs to be the right child of current

current.right_child = new Binary_Tree_Vertex(x)

done = true

else: # keep going down the tree

current = current.right_child

Here’s what is happening in this algorithm. As we work our way
down the tree, we compare the new value x to the value in the current
vertex and decide to go left or right. But we can’t just jump down to
the new level because if it happens to be a nil pointer then we have
successfully found the insertion point, but by jumping down a level
we have lost the link to the tree vertex which needs to be the parent
of the new vertex. So we "test the water" by checking to see if the
appropriate child of current is a nil pointer. If it is, then we create the
new vertex and attach it to current. If the child is not a nil pointer then
we move down to it in the normal way.



binary search trees (part 1) 9

I wouldn’t actually ever use this iterative method since the recursive
method is so much cleaner. Behold!

def Insert(x):

this.root = rec_Insert(this.root,x)

def rec_Insert(current,x):

if current == nil:

current = new Binary_Tree_Vertex(x)

elif current.value >= x:

current.left_child = rec_Insert(current.left_child,x)

else:

current.right_child = rec_Insert(current.right_child,x)

return current

I remember feeling a sense of awe when I first saw this - it looks too
simple to be correct! It makes beautiful use of the recursive structure We were easily impressed in the Dark

Ages.of the tree to eliminate the need to treat the root as a special case,
and it does away with the nested ifs. Furthermore it illustrates a very
sound design principle for recursive algorithms that modify binary
trees:

A method that potentially modifies a tree should return a pointer to the top
of the modified tree, even if it didn’t change.

The beauty of this is that we can apply this principle at every vertex
in the search path (that is, it applies to subtrees as well as to the whole
tree). We call the recursive method on either the right or left child
of the current vertex and simply attach the returned pointer to the
modified subtree in place of whatever was there before.

For our insertion algorithm, in almost all cases this will be the same
connection as was already there, but in the one crucial situation where
we have found the insertion point an existing nil pointer gets replaced
by the pointer to the new Vertex. Then we work our way back out of
the recursion, re-attaching the vertices as we go.

See how this works at the root: we call the recursive method on the
subtree that starts at the root (ie. the whole tree) and whatever we
get back as the top of the modified tree is made the root. If the tree
was empty, this will be a pointer to the new Vertex. If the tree was
not empty, it will be a pointer to the previous (and unchanged) root
Vertex. Either way, it is correct.



binary search trees (part 1) 10

Next we will look at more complex algorithms for modifying trees,
in which the subtrees may be very different after the changes have
been made. At that point the power of saying "I know the recursive
call will return a pointer to the top of the fixed subtree, so I can just
attach it and return" will become more apparent.


	Binary Search Trees
	 BST_Search
	BST_Insert

