Binary Search Trees - Part 10
Robin Dawes
February 17, 2021

& -c; EVEALS that in Binary Search Trees as in life, getting rid of some-
= 22 thing we don't is often harder than adding something new.

j QAW

Deleting a Value from a BST

DELETING A VALUE from a set stored in a Binary Search Tree is a bit
more complicated than inserting a value, but we will deal with the
steps one at a time. First, we need to find the value - which is easy
because we can just use the method we developed for BST_Search.

Once the value is found, we have a problem. When we delete a
value from an array, we can move all the following values one space
towards the beginning of the array to close up the gap. When we
delete an element from a linked list, we just make its predecessor point
to its successor to fix the list. But with a tree if we delete a value x, the
vertex containing x may have two children to reconnect, and there is
only one link from v’s parent to connect to them.

One option would be to simply move values around in the tree so
that the value we want to delete is in a leaf! But in order to maintain a
valid arrangement of values in the tree, we might have to move a lot of
them - effectively rebuilding the tree.

Our goal is to find a fast algorithm that will remove the undesired
value (and the vertex that contains it) and maintain the essential
properties of the Binary Search Tree, while making as few changes as
possible to the tree.

The standard approach is to replace the vertex we are removing
with another existing vertex, and attach the children of the deleted
vertex to its replacement. Of course that requires finding a suitable
vertex. The vertex we use as a replacement needs to contain a value
that is > all values in the left subtree and < all values in the right
subtree.

BINARY SEARCH TREES - PART 10 2

One candidate is the vertex that contains the largest value in the left

subtree.

We will delete this vertex from the left subtree and "plug it in" to / \
replace the vertex v (the one we are trying to delete). But doesn't this
just present us with another "delete a vertex" problem? Yes, but it / \ / \

turns out that this problem is very easy to solve.

Consider this BST. Note the partial edge coming in to the vertex / \
containing 18. This indicates that something points to this vertex. It ,
may be a parent vertex, or it may be the root pointer of the tree. Our /
goal here is to delete the "18". e

12 / : 15

To delete the 18, we find the largest value in its left subtree - in this
case, that is 17. (We will talk about how to locate this value a bit later.)

If we delete the vertex containing 18 and pull the vertex containing \
17 out of its current location, the pieces of the tree look like this. I
have moved the 17 up in the diagram - of course there is no actual 'z}
movement of the information in memory - that is what we are trying 3 A D)
to avoid. / \ / § \
4) n 21) (o

BINARY SEARCH TREES - PART 10

Now we need to put these pieces back together. But that is easy!

1. Whatever it was that used to point to 18 should now point to / \
17.
2. 17’s left_child and right_child pointers should now point to i / \) / \

the subtrees that used to be 18’s left and right children.

3. Whatever it was that used to point to 17 (in this example, 11) / \
should now have 17’s old left child as its right child.

The result is shown at the right.

That may have seemed like a bunch of ad hoc fixes ... but it turns
out that we do exactly the same things every time (with one special
case that we will deal with later).

Here’s that same "fixed" tree, but I have drawn a line around the e S
17

new "top" vertex and its left subtree: o / \
Note that the material within the dotted line consists entirely of / 0

vertices that were in the left subtree of the vertex we originally deleted / \ / \

(the 18). We can describe what we have done to that subtree very sim-

ply: we modified it so that its largest value was at the root. If we treat] / \ .

that modification as a function (I will call it "fixing the left subtree") \
(13)

as

(12 (15)

then our method of deleting 18 gets even easier to express: i »)

1. let p be the thing that points to 18

2. let tmp be a pointer to the root of the subtree that results from
fixing 18’s left subtree

3. make tmp.right_child point to 18’s right subtree

4. make p point to tmp

How do we know that tmp.right_child isn’t already in use? We know
that because when we fix the left subtree, we move the largest value to
the top ... so the right subtree of the vertex holding this value will be

empty! ... because its right subtree could only
contain values that are larger, and we
have chosen the largest value in this
subtree.

Alarm bells ringing? They might be. What happens if 18’s left
subtree is empty? We obviously can’t pull out the largest value in
an empty subtree. Fortunately this special case is extremely easy to
resolve:

simply becomes:

which we can express algorithmically as

1. let p be the thing that points to 18

2. make p point to 18’s right subtree

Similarly, if 18 has no right child, we can simply make p point to
18’s left child.

BINARY SEARCH TREES - PART 10

21 ;86
[30)
\ _ //
21) (86)

BINARY SEARCH TREES - PART 10

Now we can put all the pieces together. We can do it iteratively or
recursively ... guess which I am going to choose! As usual, we will
assume this is an instance method within our Binary_Search_Tree
class. The algorithm recursively searches for the desired value, then
starts applying the fixes we have just developed.

def Delete(x):
this.root = rec_Delete(this.root,x)

def rec_Delete(current, x):
if current == nil:
return current # takes care of case where x is not
present in T
else if current.value < x:
current.right_child

rec_delete(current.right_child, x)
return current
else if current.value > x:
current.left_child = rec_delete(current.left_child, x)
return current
else: # found it!
if current.left_child == nil:
return current.right_child
else if current.right_child == nil:
return current.left_child
else:
tmp = fix_left_subtree(current)
tmp.right_child = current.right_child
return tmp

And that’s it. At each stage of the search we enter the appropriate
subtree, and then use whatever comes back as the new subtree on
that side. When we find the value to delete, we fix its left subtree and
re-attach its right subtree, then return the root of the rebuilt subtree
(which automatically gets properly attached at the next level up).

Except that is not quite it ... we haven’t looked at the problem of
fixing the left subtree. There are two cases to consider:

- the largest value in the left subtree is at the root of the subtree

- itisn’t.

If the largest value in the left subtree is already at the root of the
subtree, we don’t have to do anything (its right_child pointer is nil)

BINARY SEARCH TREES - PART 10

so we just return it. How do we recognize that the largest value in the
left subtree is at the root? By checking its right_child pointer! The
right_child pointer of the subtree’s root is nil if and only if the largest
value is at the root.

If the largest value in the left subtree is not at the root of the sub-
tree, it must be in the root’s right subtree. We step down to the root’s
right child. If this is the largest value in the subtree, it will have no
right child, and conversely if it has a right child then it is not the
largest value. Extending this logic we can see that to find the largest
value we can simply continue stepping down to the right until we
reach a vertex with no right child. This is the vertex we will move to [
the top of this subtree. In its new position, its left child will be the g
original root of the subtree and its right child will be nil. Down where / \
it came from, its left child needs to be reattached ... which it can be, as - X
the right child of the previous parent of the vertex we are moving up.

f'/ h
So given this as the left subtree: - / \

v !
we see that the root (7) has a right child so we step down to the 10 \ 17‘
right until we can’t go any further (at the 17). We make 17’s left_child /
pointer point to the original root (7) and we make the vertex we A
looked at just prior to 17 (17’s parent, which is 11) point to 17’s left \ 28)
child (13). /\
This is simple coding: ') /)

def fix_left_subtree(v):
temp = v.left_child # temp is the root of v's
left subtree
if temp.right_child == nil:
return temp # no fix needed
else:
parent = nil
current = temp
while current.right_child !'= nil:
parent = current
current = current.right_child
parent.right_child = current.left_child
current.left_child
return current

temp

And now, at long last, we are really done with the deletion algo-
rithm.

BINARY SEARCH TREES - PART 10

Was That Worth the Pain?

WHhY pip we Go through the agonizing exercise of working out the
precise details of the Insert and Delete operations on Binary Search
Trees? There are several reasons:

It’s really good exercise for our brains.
It deepens our understanding of the BST data structure.

It strengthens our coding chops.

It is a good warm up for what comes next (Red-Black Trees).

L N N

It gives us a basis for discussing the computational complexity
of these operations.

Let’s focus on the last of these. Our whole reason for looking at Bi-
nary Search Trees was to provide a better alternative to a sorted array
when the required operations are Search, Insert and Delete. What we
have seen is that there are algorithms for these operations that first
find the appropriate location in the tree (two locations, for Delete)
and then do a small sequence of actions that takes constant time. Fur-
thermore, we saw that "finding the appropriate location" consisted of
making comparisons, and that each time we made a comparison we
either recognized that we were at the proper location, or we moved
down to a specific vertex, one level lower in the tree. None of the algo-
rithms required us to back-track and go down a different branch of the
tree than we were already in.

Thus for each of these algorithms, the maximum number of itera-
tions or recursive calls is bounded by the height of the tree. In other
words, if T has height h, then each of our algorithms runs in O(h)
time.

The problem is that a BST with n values can potentially have n
levels. This happens when each vertex has only one child. This means
that our algorithms have a worst-case complexity of O(n), which is
no better than an array. So it seems that all of our work has been for
naught.

But don't despair! Now we will begin our study of Red-Black trees,
a cleverly designed type of BST that solves this problem.

7

	Deleting
	 What was the Point?

