Let’s Start At the Very Beginning ...
Robin Dawes
September 9, 2021

e HAT’s a very good place to start.

glg When you read you begin with A-B-C
In Computing we start with com-plex-i-ty.

Com-plex-i-ty! Com-plex-i-ty!

The first big thing just happens to be
Com-plex-i-ty! Com-plex-i-ty!

Ancient History

WHEN COMPUTERS FIRST came into general use, people everywhere
started to write programs to solve problems. Many common problems
- such as computing the square root of a number, or storing and re-
trieving telephone numbers - could be solved in many different ways.
It was natural to try to identify the best way to solve these problems.
But in order to choose a best solution, we need a measurable criterion
that lets us compare solutions.

The basic criterion that we use today is based on time-requirements.
If algorithms A and B both solve the same problem but B takes less by "solve" we mean "always give the
time than A, then we prefer to use B. correct answer to
The difficulty with this is that if we want to compare the time re-
quirements of two algorithms, we need to ensure a level playing field:
the two algorithms need to be tested under identical conditions. The
same hardware, the same OS, the same programming language, the
same environment (including the same background processes being
run by the OS), etc. etc. Research papers used to be published listing
the execution time of new algorithms as evidence of improvement. or new implementations of old algo-
rithms

But without a common frame of execution, these numbers were rarely
meaningful.



LET’S START AT THE VERY BEGINNING ...

Slightly Less Ancient History

To movE away from the ephemeral details of hardware and software
and focus on the fundamental properties of the algorithms, two ab-
stractions are applied:

1. Instead of measuring clock-time, we compute the number of op-
erations executed by an algorithm as a function of the size of the
input.

2. Instead of focusing on the exact number of operations, we look at
the rate of growth of the number of operations.

The justification for this simplified method of comparing algo-
rithms is this: if we can show that the number of operations for algo-
rithm B grows more slowly than the number of operations for algo-
rithm A, then there must be some value 1 such that for all input of
size > ny, algorithm B will use fewer operations than algorithm A.

In other words: once the size of the input gets large enough, algo-
rithm B will be faster than algorithm A.

I wrote some fairly detailed notes on computational complexity
back at the beginning of 2020 (pre-pandemic!) Rather than rewrite
them, I will just include them here.



	Ancient History

