
Binary vs Trinary
Robin Dawes
September 16, 2021

I
n this assignment you are tasked with comparing the binary
search algorithm to a potentially superior version.

.

Binary Search

The binary search algorithm for searching a sorted array is well
known.

Here is a recursive version:

bin_search(A,first,last,target):

returns index of target in A, if present

returns -1 if target is not present in A

if first > last:

return -1

else:

mid = (first+last)//2

if A[mid] == target:

return mid

elif A[mid] > target:

return bin_search(A,first,mid-1,target)

else:

return bin_search(A,mid+1,last,target)

binary vs trinary 2

and here is an iterative version:

bin_search(A,target):

returns index of target in A, if present

returns -1 if target is not present in A

done = False

location = -1

first = 0

last = len(A)-1

while not done:

if first > last:

done = True

else:

mid = (first+last)//2

if A[mid] == target:

location = mid

done = True

elif A[mid] > target:

last = mid-1

else:

first = mid+1

return location

Binary search reduces the number of possible locations for the
target value by (about) half each time, which makes it quite efficient.
But we could eliminate more locations by looking at two values in the

range A[first ... last] : If we look at the value
1
3
of the way from first

to last, and the value 2
3
of the way from first to last, we can eliminate

about 2
3
of the locations each time. We can call this algorithm Trinary

Search.

binary vs trinary 3

Here is a recursive version of the trinary search algorithm:

trin_search(A,first,last,target):

returns index of target in A, if present

returns -1 if target is not present in A

if first > last:

return -1

else:

one_third = first + (last-first)//3

if A[one_third] == target:

return one_third

elif A[one_third] > target:

search the left-hand third

return trin_search(A,first,one_third-1,target)

else:

two_thirds = first + 2*(last-first)//3

if A[two_thirds] == target:

return two_thirds

elif A[two_thirds] > target:

search the middle third

return trin_search(A,one_third+1,two_thirds-1,target)

else:

search the right-hand third

return trin_search(A,two_thirds+1,last,target)

binary vs trinary 4

and here is an iterative version:

trin_search(A,target):

returns index of target in A, if present

returns -1 if target is not present in A

done = False

location = -1

first = 0

last = len(A)-1

while not done:

if first > last:

done = True

else:

one_third = first + (last-first)//3

if A[one_third] == target:

location = one_third

done = True

elif A[one_third] > target:

search the left-hand third

last = one_third-1

else:

two_thirds = first + 2*(last-first)//3

if A[two_thirds] == target:

location = two_thirds

done = True

elif A[two_thirds] > target:

search the middle third

first = one_third + 1

last = two_thirds - 1

else:

search the right-hand third

first = two_thirds + 1

return location

Your assignment is to empirically evaluate the efficiency of these
two search algorithms. As usual, in lieu of actual time measurements
we will count operations. But to simplify the process we will only
count the number of times a value in the array is compared to target.

binary vs trinary 5

Coding

Implement both binary search and trinary search in the language
of your choice. You are not required to follow the pseudocode given

Not a completely free choice: you must
choose one of C, C++, Java or Python.

above.

Modify the algorithms so that they count the number of times
values in the array are compared to target.

Experiment 1

For n = 1000, n = 2000, n = 4000, n = 8000, n = 16000 complete the
following steps.

1. Generate an array (or list, in Python) of n integers in ascend-
ing order. Filling the set with random numbers

may make the experiment superficially
seem more scientific, but in fact it is
not necessary. You could simply fill the
array with consecutive integers in order.
However, in Experiment 2 you will want
target numbers that fall between the
numbers in the set ... so you many want
to fill the array with consecutive even
numbers.

2. Use binary search to search the array for each of the values in
the array. Record the average number of "comparison to target"
operations required to conduct the binary searches.

3. Use trinary search to search the array for each of the values in
the array. Record the average number of "comparison to target"
operations required to conduct the trinary searches.

Experiment 2

Repeat Experiment 1, but this time search only for values that are not
present in the array. (One easy way to do this is to fill your array with
even values, then search for odd values.) Search for one value that is
too small, one value that is too large, and one value that falls between
each pair of consecutive values in the array (a total of n+1 search
values).

binary vs trinary 6

Presentation of Results

Create tables or graphs for the results of the two experiments.

A table might look like this (the numbers shown here are com-
pletely random):

Experiment 1

n Binary Search Trinary Search

1000 7.5 6.189
2000 9.488 9.374
.

Based on the results of your experiments, answer the following
questions:

1. Binary search and trinary search both fall into the O(log n)
complexity class. Do your experiments show growth in the
average number of comparisons that is consistent with this
classification?

For an algorithm in the O(log n) class,
doubling the size of the input should
result in an approximately constant
growth of the number of comparisons.
For example, if the input size goes
from 1000 to 2000 and then to 4000, the
average number of comparisons might
go from 8 to 9.5 to 10.9 ... increasing by
about 1.5 each time n doubles.

2. Compare the average number of counted comparisons for
the two search algorithms, for different values of n. For what
values of n (if any) does either of the search algorithms use ≤
90% as many comparisons as the other? For example, you might find that for n =

4000, binary search uses an average of 24
comparisons and trinary search uses an
average of 36 comparisons. 24 ≤ 0.9 ∗ 36

3. On the basis of your experiments, can you conclude that ei-
ther binary search or trinary search is preferable over the
other?

Logistics

You may complete the programming part of this assignment in
Python, Java, C or C++.

You must submit your source code, properly formatted and docu-
mented according to standards established in CISC-121 and CISC-124.
You must also submit a PDF file containing your answers to the ques-
tions. Both files must contain your name and student number, and
must contain the following statement: “I confirm that this submission
is my own work and is consistent with the Queen’s regulations on
Academic Integrity.”

binary vs trinary 7

You are required to work individually on this assignment. You
may discuss the problem in general terms with others and brainstorm
ideas, but you may not share code. This includes letting others read
your code or your written conclusions.

If you find code or other material on the internet that helps you
understand how to complete this assignment and you want to use
what you have learned, you must name the source as a reference.
Also, you must make sure that what you submit is the result of your
own work. In other words you cannot simply cut and paste from a
source. My best advice is to study what you find, learn from it, then
close the source and use what you have learned to build your own
solution. If you do that, you will not be in danger of plagiarism.

The due date for this assignment is September 24, 2021, 11:59 PM

Submission will be through onQ.

	Binary Search
	Coding
	Experiment 1
	Experiment 2
	Presentation of Results
	Logistics

