
Test 1 Sample Questions
Robin Dawes
September 30, 2021

Overview

You can expect questions on the following topics:

◊ complexity

◊ binary search

◊ binary trees

◊ binary search trees

Complexity

Here are some sample questions:

1. Prove that f (n) = n3 is not in Ω(n4)

Solution:

If n3 were in Ω(n4) there would exist constants c > 0 and n0 such
that n3 ≥ c ∗ n4 ∀ n ≥ n0

⇒ 1
n
≥ c ∀ n ≥ n0

⇒ 1
c
≥ n ∀ n ≥ n0

But 1
c
is constant so n >

1
c
∀ n ≥ 1 +

⌈
1
c

⌉
, which gives us a

contradiction. Therefore the constants c and n0 do not exist, and
therefore n3 6∈ Ω(n4)

test 1 sample questions 2

2. Prove that if f (n) is a polynomial function in which all coeffi-
cients are positive and k is the largest exponent, then f (n) ∈ Θ(nk)

Solution:

Let f (n) = a0 + a1 ∗ n + a2 ∗ n2 + · · · + ak ∗ nk and let m =

max(a0, a1, . . . ak)

f (n) ≤ m ∗ 1 + m ∗ n + m ∗ n2 + · · ·+ m ∗ nk

= m ∗ (1 + n + n2 + · · ·+ nk)

≤ m ∗ (nk + nk + · · ·+ nk)

= m ∗ (k + 1) ∗ nk

Since m and k are constants, m ∗ (k + 1) is also a constant. Thus f (n) ∈
O(nk)

Because all the ai values are > 0, f (n) > ak ∗ nk ∀n ≥ 1. Thus
f (n) ∈ Ω(nk)

Thus f (n) ∈ Θ(nk)

test 1 sample questions 3

3. Consider this function. Determine its big-O class, its Ω class, and
(if possible) its Θ class

Complexity(n):

i = 1

while (i <= n):

print(i)

i = i*2

Solution:

Actually, the question should have said "Determine the big-O class
(etc.) of this function’s running time." But people (including me)
often just refer to "complexity of the algorithm" when we really mean
"complexity of the algorithm’s running time". Anyway, it’s the run-
ning time that we are interested in.

Bye examining the function, we see the interior of the loop takes
constant time, and that the loop executes with i = 1, then i = 2, then
i = 4, until it reaches i = 2k where 2k+1 > n. This means that when
n doubles, the number of executions of the loop increases by 1. We
recognize that this corresponds to O(log n) complexity. (More formal
arguments are possible, but this appeal to established knowledge is
acceptable.)

Similarly, analysis of the loop reveals that it always executes d1 +

log2 ne times. Thus the function is in the Ω(log n) class.

Thus it is in Θ(log n)

test 1 sample questions 4

Binary Search

Here is a sample question:

A bitonic array is one in which all the values are in ascending
order until a certain point (called the peak), after which all the values
are in descending order. For example

A = [3, 7, 8, 12, 7, 2]

is a bitonic array in which the peak value is 12.

Write an algorithm that finds the peak value of a bitonic array.
Write your algorithm in clear pseudocode.

Solution:

WLOG we can assume that the peak is not in the first position or
the last position (we can ensure this by attaching an extremely low
value at the beginning and end of A).

find_peak(A): # A is indexed from 1 to n

first = 1

last = n

while True:

mid = (first+last) // 2 # integer division

if A[mid-1] < A[mid] AND A[mid+1] < A[mid] :

A[mid] is the peak

return A[mid]

elsif A[mid-1] < A[mid]:

peak lies to the right of A[mid]

first = mid + 1

else:

peak lies to the left of A[mid]

last = mid - 1

test 1 sample questions 5

Binary Trees

Here are two sample questions:

1. How many structurally different binary trees are there on 3 ver-
tices? Show them.

I realize that showing trees is difficult
in a typed answer ... that’s why this is a
practice question rather than a real one!

Solution: There are 5.

x x x x x

/ / / \ \ \

x x x x x x

/ \ / \

x x x x

test 1 sample questions 6

2. Write an algorithm that will print the values stored in a binary
tree, one level at a time, from the bottom up

For example, on this tree

x

/ \

/ \

r m

/ \ \

/ \ \

k b e

the algorithm could print "k, b, e, r, m, x" ... or any other order in
which the "k", "b" and "e" are printed in some order, then the "r" and
"m" in some order, and finally the "x"

test 1 sample questions 7

Solution:

What follows is a simple modification of the Breadth-First Traversal.
Instead of printing each vertex’s value as it comes off the queue, we
push it onto a stack. Once all the vertices are on the stack, we pop
them off and print their values - this will print the bottom level of the
tree first, then the next-to-bottom level, and so on back up to the root.

Bottom_up(): # This function belongs to a tree, so "self.root" means

root of the tree that owns this function

if self.root == nil:

return

else:

let Q be a queue

let S be a stack

Q.append(self.root) # queues support two operations: append and remove-head

while Q not empty:

current = Q.remove_head()

if current.left_child != nil:

Q.append(current.left_child)

if current.right_child != nil:

Q.append(current.right_child)

S.push(current)

now all vertices are on the stack

while S.not_empty():

vertex_to_print = S.pop()

print(vertex_to_print.value)

test 1 sample questions 8

Binary Search Trees

Here is a sample question:

Write an algorithm for a binary search tree class (with standard
definitions) that will take a value x as a parameter, and return the
number of times x occurs in the tree.

Solution:

I’m offering a recursive solution, based on the pattern used in class
and in the notes: a "starter" function that is called to set up and initiate
the recursive process.

Count(x):

return Count_recursive(root,x)

Count_recursive(v, x):

if v == nil:

return 0

elsif v.value == x:

return 1 + Count_recursive(v.left_child, x)

elsif v.value > x:

return Count_recursive(v.left_child, x)

else:

return Count_recursive(v.right_child, x)

Non-recursive solutions are perfectly acceptable.

	Overview
	Complexity
	Binary Search
	Binary Trees
	Binary Search Trees

