Assignment 5 - Radix Sort vs. The World

Robin Dawes
October 31, 2021

e HE radix sort algorithm sorts a set without ever comparing any
glg of the values. How is this possible?

The Radix Sort Algorithm

LeT S BE A LIsT Of 11 positive integers. Let B_0, B_1, ..., B_9 be lists,

all of which are initially empty. Traditionally, the B lists are called

"buckets", and radix sort is often called
bucket sort.

for each digit position i, starting with the 1’s position:
for each element x of the set:
let d be the digit in position i of x
append x to B_d
rebuild the list S by concatenating all of the B lists in order

(B_0, then B_1, etc)
set the B lists back to empty lists.

Example of the Algorithm in Operation

Sort the list [843, 952, 17, 199, 59, 33, 13, 904, 1006

Round 1: Use the "ones" digit to assign values to buckets:

B List

Contents

0
1
2
3
4
5
6
7
8
9

952
843, 33,13
904

1006
17

199, 59

S = [952, 843, 33, 13, 904, 1006, 17, 199, 59]

Round 2: Use the "tens" digit to assign values to buckets:

B List

Contents

O 0 NI O Ul = W N~ O

904, 1006
13,17

33

843
952, 59

199

S =[904, 1006, 13, 17, 33, 843, 952, 59, 199]

ASSIGNMENT 5 - RADIX SORT VS. THE WORLD 2

ASSIGNMENT 5 - RADIX SORT VS. THE WORLD 3

Round 3: Use the "hundreds" digit to assign values to buckets:

Values that do not have a "hundreds" digit go in the 0 bucket.

B List Contents

0 1006, 13, 17, 33, 59
1 199

2

3

4

5

6

7

8 843

9 904, 952

S =[1006, 13, 17, 33, 59, 199, 843, 904, 952]

Round 4: Use the "thousands" digit to assign values to buckets:

B List Contents

13,17, 33,59, 199, 843, 904, 952
1006

0
1
2
3
4
5
6
7
8
9

S =[13,17, 33,59, 199, 843, 904, 952, 1006]
None of the numbers has a "ten-thousands" digit so we are finished.

And the list is sorted!

ASSIGNMENT 5 - RADIX SORT VS. THE WORLD 4

The Assignment

Part 1: Implement Radix Sort

You can find thousands of implementations on the Internet, but I ex-
pect you to write your own. At this stage of the course, the description
given above should give you all the information you need to develop
the algorithm in Python.

Part 2: Implement Merge Sort or Quicksort

I have posted my implementations of Merge Sort and Quicksort - you
are welcome to use those with no penalty. But for your own benefit I
recommend writing your own without referring to any sources. You
may find that Quicksort is trickier to write than Merge Sort - it’s easy
to go wrong as the "left" and "right" markers come together during the
partition phase.

Part 3: Run Both Algorithms on Randomly Generated Lists, and Compare

SteP 1: Generate 100 lists of 100 randomly chosen integers. Apply This is a good check - if all the results
match, it’s very probable that the two

both of your sorting agorithms (radix sort and whichever other one _ >
algorithms are both correct because it’s

you chose) to each list and test to make sure the results are the same. extremely unlikely they would both
go wrong in exactly the same way. Of
STEP 2: Repeat the followjng; course if the results don’t match, one

or both of the algorithms must have an
error.

- Generate a random list of 10,000 integers from the range
[100,000 ... 999,999]

- Make a copy of this list

- Use the time module to time your radix sort algorithm on one

copy of this list See below for a brief demonstration on
how to do this.

- Use the time module to time your other sort algorithm on the
other copy of this list

How many times should you repeat this? Repeat it until you feel con-
fident in saying that for sets of this size and nature, the average time
for one of the sorting algorithms is less than the average time for the
other. Your conclusion might be something like "In 100 trial runs,
Algorithm I was faster than Algorithm [87 times.
The average time for Algorithm Il was Il seconds and the

ASSIGNMENT 5 - RADIX SORT VS. THE WORLD 5

average time for Algorithm I was lll seconds. These empir-
ical data suggest that for sets of this size and nature, the average time
for Algorithm [l is less than the average time for Algorithm

Or it might look like "In 300 trial runs, Algorithm N was
faster than Algorithm I 48% of the time, while Algorithm
B v -s faster 46% of the time. In the other 6% of the trials, the
running times differed by less than 0.0001 seconds and we judge that
to be a tie. The average times for the two algorithms are [l seconds
and M seconds, which are within 2% of each other. It is not possi-

ble to say with confidence which has the faster average time." Advanced statistical analysis is not
required! And if the results are close,
you can choose the threshold for saying
they are too close to decide which is
faster.

How You Will Be Graded

The assignment will be marked out of 100. 90% of the grade will be for
correctness and 10% of the grade will be for programming style.

The grader will read your code and will run your program to test
correctness.

What to Submit

For this assignment, you are required to upload to onQ:

- A Python program containing

(a) your implementation of Radix Sort

(b) your implementation of your other selected sorting
algorithm

(c) your test procedure that validates your implemen-
tations by comparing results

(d) your data-gathering procedure that collects the
required timing data

- A text file or pdf containing your conclusion regarding the
average time required for the two algorithms

- You are NOT required to upload the html page generated
by pydoc, because I know some students in the class have
not been able to get this to work. Be prepared though, I be-
lieve that CISC-124 requires the javadoc (similar to pydoc but

ASSIGNMENT 5 - RADIX SORT VS. THE WORLD

for Java - but I guess that’s obvious!) documentation to be
handed in.

Remember to put your name and student number at the top of your
program file, as well as the statement regarding academic integrity
(as specified in Assignment 1). Also, your program must contain
appropriate docstring documentation at the beginning of the program
and in each defined function.

Due Date

The due date for this assignment is 20211107 (November 7), 11:59 PM.
This is not the due date originally posted, but due to circumstances I
was not able to post this assignment on October 29 as planned.

Using the Time Module

The Time module lets you take a clock reading. If you take a clock
reading just before calling a function and take another just after calling
the function, subtracting the first reading from the second reading
gives you the elapsed time in seconds.

ExampLE:

import time

def fun ():
i=1
x =20
while i <= 1000000: # loop a million times doing some stuff
X += 2
i4=1
start = time.time ()
fun ()

end = time. time ()
print(end — start)

	The Radix Sort Algorithm
	Example of the Algorithm in Operation
	The Assignment
	How You Will Be Graded
	What to Submit
	Due Date
	Using the Time Module

