Red-Black Trees Part 1

Robin Dawes
February 17, 2021

NTRODUCES and develops the most complex data structure cov-
%I% ered in CISC-235: the Red-Black Tree. These structures have
the admirable property that they guarantee O(log) time for
insertion, deletion and search operations.

Motivation and History

As wE HAVE sEEN, the ideal Binary Search Tree has height approxi-
mately equal to log n where 1 is the number of values stored in the
tree. Such a BST would guarantee that the maximum time for search-
ing, inserting and deleting values is always in O(log 1) because our
algorithms for these operations have running time proportional to the
height of the tree.

But if we have no control over the order in which the values are
added and/or deleted, the BST may end up looking like a linked list:
each vertex may have just one child. In this case the maximum time
for searching, inserting and deleting values is in O(n), which is no bet-
ter (and in the case of searching, much worse) than the time required
for these operations if we store the set in a sorted array.

ExamrLE: If the values are inserted in the order 18, 7, 11, 17, 13, 15 the
binary tree ends up looking like a linked list: each vertex has only one
successor. The number of levels is equal to the number of values in the
set.

In order to claim that BSTs are better than sorted arrays we need
to find a way to always attain that desirable O(logn) complexity for
the three operations. One idea would be to rebuild the tree into its
ideal shape after each insertion or deletion ... but that would be a lot
of work. It would bring the complexity of each insert/delete back up
to O(n).

A better option would be to establish a limit on the number of
levels - for example, we might choose 2 * log . Then whenever the

tree exceeds this number of levels, we could rebuild the tree from
scratch and make it as compact as possible.

This is a very interesting idea. The "rebuild from scratch" operation
is time-consuming - although not foo bad: we can rebuild the tree in
"perfect” form in O(n) time but we probably wouldn’t have to do it
very often. With luck, after rebuilding the tree we could do a lot of
inserts and deletes before we had to rebuild again. Thus the average
amount of extra work we do for each insert and delete would be quite
small. This would be a reasonable solution if we don’t mind a sig-
nificant delay once in a while, in exchange for very fast performance
almost all the time.

What we will see now is that it is possible to take another approach:
we can keep the number of levels small - and thereby guarantee fast
operations - by doing a little bit of extra work fairly often.

In the 1960’s people started to use the term BALANCED to describe
trees where each vertex has the property that its left subtree and right
subtree are "about the same height" ... of course "about the same
height" can be interpreted in different ways.

Red-Black trees were invented in 1972 in an effort to create a binary
search tree structure that maintains O(log 1) height while requiring
relatively few re-organizations of the tree. In a Red-Black tree, the
idea of balance is "at each vertex, neither subtree is more than twice as
tall as the other".

DeriniTION: A RED-BLACK TREE is a binary search tree in which each
vertex is coloured either Red or Black.

Red-Black trees obey the following structural rules :
1. All vertices are coloured Red or Black.
2. The root is Black.

3. All leaves are Black, and contain no data (ie. data values are only
stored in internal vertices).

4. All internal vertices have 2 children. The children of a Red vertex
must both be Black.

5. At each vertex, all paths leading down to leaves contain the same
number of Black vertices.

RED-BLACK TREES PART 1 2

I strongly recommend figuring out how!

For your own interest you may want
to read about AVL trees, which have
similar properties but a much stricter
balance rule: at each vertex, the two
subtrees must have heights that differ
by no more than 1. AVL trees are more
compact than Red-Black trees but they
require more frequent adjustments to
stay in balance.

RED-BLACK TREES PART 1

Regarding the colour information for vertices: in practice all that is
required is a single bit to indicate if the vertex is Red or Black, but for
learning purposes we can imagine that each vertex has an associated
string containing "Red" or "Black".

The definition of Red-Black Trees allows for significant differences
in height between the left subtree and the right subtree at any given
vertex. For example, the left subtree might consist entirely of Black
vertices and have height x, while the right subtree might consist of
alternating levels of Red and Black vertices and have height 2x.

From the definition we can quickly show that in a Red-Black Tree
each vertex has the property that if we look at the longest path down
from this vertex to a leaf, this path cannot be more than twice the
length of the shortest path down from this vertex to a leaf:

TreoreM: The longest path down from any vertex in a Red-Black Tree
to a leaf is no more than twice the length of the shortest path down
from that vertex to a leaf.

Proor: Let v be any internal vertex in a Red-Black Tree, and let the
longest path from v down to a leaf have length k. Let b be the number
of Black vertices in this path. Every Red vertex in this path must
have a Black child, so the number of Red vertices must be < b. Thus
k<2b

Now consider the shortest path from v down to a leaf. Let the
length of this path be s. Since all paths from v down to a leaf must
contain the same number of Black vertices (Rule 5), we know b < s

Putting these together gives k < 2b < 2s ... that is, the length of
the longest path is < twice the length of the shortest path. b o)

At this point I am just going to claim that a tree that satisfies these
rules must have O(log 1) height where is the number of values in
the tree. We will prove this claim later.

The significance of these rules is that they are all "local" in the sense
that we are specifying properties of individual vertices. Yet by satisfy-
ing these local rules we obtain the desired "global" property that the
whole tree has O(log) height. This means that if we can guarantee
that our insertions and deletions always maintain the local require-
ments, we never need to worry that the height of the tree is growing
out of control.

3

We will see that inserting new values into the tree can be done
in such a way that the requirements are satisfied using only local
changes to the tree. What’s more, the balancing operations are simple
to implement.

We will not discuss the process of deleting values from a Red-Black
tree. The principles are the same but it is time-consuming to cover all
the details.

Inserting A New Value into a Red-Black Tree

As wiTH ANY binary search tree, there is exactly one legal place for a
new value to be inserted. The RB insertion algorithm starts by finding
this place. Due to the structural requirements of the tree the location
will be occupied by a leaf which contains no data value.

Once the insertion point has been found, the insertion process is as
follows:

1. Replace the leaf by a new internal vertex containing the new
value. Give this vertex two (empty) leaves as children, both coloured
Black. Colour the new vertex Red. In practice, this can all be done in
the constructor method for the new vertex.

Note that at this point, requirement 5 is still satisfied because insert-
ing a Red vertex does not change the number of Black vertices on any
path. The only requirements that may be violated are 1 (if the tree
was empty, the new vertex is the root and it should be Black) or 4 (the
parent of the new vertex might be Red). We will deal with violations
of Requirement 1 by ending every insertion with a "Colour the root
Black" operation.

Violations of Requirement 4 are the ones that will occupy us.

2. Work back up the path from the new vertex to the root, fixing the
tree so that the requirements are satisfied at each point. Remarkably
(and this is a wonderful feature of the RB Tree structure), we never
have to check to make sure Rule 5 is satisfied! This is a good thing
because checking this would take a long time (at least O(n) for each
insertion). The operations we do to fix the tree guarantee that Rule 5
will always be satisfied.

RED-BLACK TREES PART 1

From now on in these notes I am going
to be lazy and use RB instead of Red-
Black.

4

RED-BLACK TREES PART 1 D

The CLRS text! uses Vertex objects that have Parent pointers, and ! Cormen, Leiserson, Rivest, Stein
gives very clear pseudo-code for the entire insert operation. The
basic idea is that whenever we are currently at a RED vertex with a
RED parent we need to fix something to satisfy the RB Tree rules. We
do this by looking at the grandparent of the current vertex. We know
three things about the grandparent:

1. It must exist (because the Red parent cannot be the root)

2. It must be Black (because the tree did not contain any Red-Red
conflicts before the insertion).

3. It must have two children (because all internal vertices in a RB tree
have two children)

We examine the colour of the grandparent’s other child, which in
the figures below is labeled "S" for "sibling". There are several cases -
each of the ones shown has the "P" vertex as the left child of the "GP".
There are mirror image cases where the P is the right child of the GP.

Case 1: The Sibling is RED

RED

C =“Current”

P =“Parent”

GP = “Grandparent”
S = "Sibling”

Casel

RED-BLACK TREES PART1 6

Case 2: The Sibling is BLACK

Case 2.1: The Current and Parent are on the same side (ie.
they are both left children or both right children).

@ BLACK
RED
® ©
e RED

BLACK

Case 2.1

Case 2.2: The Current and Parent are on different sides (ie.
one is a left child and the other is a right child).

@ BLACK
RED
& ©®

BLACK
RED o

Case 2.2

Based on the case, we either

Case 1: Don't change the structure. Simply recolour the grandpar-
ent, the parent and the grandparent’s other child (S).

@ BLACK
RE e RED

D

o RED

C ="“Current”

P = “Parent”

GP = "Grandparent”
S = “Sibling”

becomes

RED-BLACK TREES PART 1

7

RED-BLACK TREES PART 1 8

Case 2.1 Do a sINGLE ROTATION and recolour the vertices.

@ BLACK
RED
& ©®

BLACK
o RED

becomes

This is called
“single rotation”

e BLACK

BLACK

T1 has been included in the figure to show that it moves from being
the right child of P to being the left child of GP.

RED-BLACK TREES PART 1 9

Case 2.2 Do a pousBLE ROTATION and recolour the vertices.

This is “double rotation”

becomes

It is important to understand that these diagrams only show the
parts of the tree that move and/or change colour - everything else is
unaffected by the operation. For example: in the double rotation we
know that P has a left child (because P is RED), but that left child is
still the left child of P after the rotation so I didn’t show it in the figure.
Similarly in the single rotation we know that C has two children, but
they are still the children of C after the rotation so there is no need to
show them in the diagram.

The two crucial things to understand about each of these fixes are
that each of them

- eliminates the Red-Red conflict.

- maintains the balance property. Each vertex ends up with an
equal number of Black vertices on every path to a leaf below
it.

Furthermore, the number of Black vertices on each path from the

root of the subtree to the leaves is exactly the same after the fix as it
was before the insertion! In other words, the subtree looks exactly the
same to the vertices above GP in terms of the number of Black vertices
encountered on paths to the leaves.

This seems like magic. We added a vertex, did some twisting and
juggling, and the paths didn’t get any longer? And this happens every
time? How is that possible?

Well of course the paths do get longer - it’s just that we don’t count
the Red vertices.

Note that the cases that involve rotation produce a modified subtree
with a Black vertex at its top. This means that there will be no more
Red-Red conflicts for this insertion ... so the fix is complete. However,
when we apply the fix for Case 1 we end up with a Red vertex at the
top of the subtree. If this vertex has a Red parent we have a new prob-
lem to fix. But note that the new problem is higher up the tree (closer
to the root). That means that even if we keep on introducing new Red-
Red conflicts (and then fixing them), eventually we will get to the root
of the tree where there cannot be a Red-Red conflict because the root is
always Black.

RED-BLACK TREES PART 1

This explains why we have that rule!

10

RED-BLACK TREES PART 1

The decision regarding which case applies is based completely on
the local structure - there is no randomness or calculation involved,
and we never have to look at the values in the vertices. This is the
decision sequence:

if Current and Parent are both Red:

if Grandparent’s other child (Sibling) is Red:
Colour Grandparent Red
Colour Parent and Sibling Black

elsif the Current and the Parent are both on the "same side":
Do a single rotation

else:
Do a double rotation

In every case the number of operations is fixed and takes constant
time. As mentioned previously, fixing a Case 1 problem may intro-
duce a new Red-Red situation, so we move up the tree and fix the new
problem. Since we always move upwards we will do at most one fix
on each level of the tree, each fix requiring constant time. Thus the
complexity of rebalancing the tree is the same as the complexity of
finding the insertion point.

In the next note we will look at the implementation of the insert
algorithm.

11

	History
	Red-Black Tree Insertion
	Just the Code

