Red-Black Trees Part 10

Robin Dawes
February 17, 2021

v~ ONTINUES the presentation of the insertion algorithm for Red-

! Black Trees. This is the most complex algorithm we have seen
4 50 far in this course. It rewards close attention with a deep

understanding of how binary trees can be manipulated.

The Insertion Algorithm ... Live!

In THE LAST NOTE we discussed the cases that arise when we need to
re-balance a Red-Black Tree after inserting a new value. Now we need
to show that each of these cases can be resolved using a small number
of pointer and colour adjustments to a few vertices of the tree.

I mentioned earlier that in the CLRS definition of a Vertex object,
each Vertex contains a pointer to its parent Vertex. Using Parent point-

ers the balancing algorithm can be performed iteratively. The rotation There is nothing wrong with this
approach! If it appeals to you, please

see the CLRS text for complete pseudo-
changed, the corresponding parent pointer must also change. code.

operations require more updates since every time a child pointer is

My personal preference is to do this recursively (surprise!) so that
Parent pointers are not needed. Instead of looking "upwards" for a
Red vertex with a Red parent, I prefer to look "downwards" from each
vertex to see if it has a Red child that also has a Red child. In other
words we make the grandparent work harder than anyone else (just
like in real life).

The overall structure of this insertion method is identical to our
previous insertion algorithm for plain binary search trees. All that
has been added are the balancing operations. The fixes and rotations This is why the earlier insertion algo-
are done as we exit each level of recursion after the new vertex is rithm was written that way!
added to the tree. Each vertex on the search path checks to see if there

is a problem just below it, and fixes it if there is.

RED-BLACK TREES PART 10 2

The logic of the recursive RB insert method looks like this:

recursive_RB_insert(Vertex v, int x):
if (v is a leaf):
return new Vertex(x) # the new Vertex is automatically constructed with 2
empty leaves below it
else if (v.value > x):
v.left_child = recursive_RB_insert(v.left_child, x)
now v takes the role of GP and looks at its child and
grandchild to see if there is a problem
if (v.left_child.colour == B):
return v # no problem
else:
v.left_child is Red ... there may be a problem
so check the children of v.left_child
if (v.left_child.left_child.colour == R) OR (v.left_child.right_child.colour == R):
Houston, we have a problem
figure out which case applies
make the fix
return the vertex that is now at the top
else: # v.value < X
do the mirror image of the the operations above, but use
v.right_child instead of v.left_child
Note that there may be a problem at v itself - it may be Red and one
of its children may also be Red. v doesn’t care! It will let its parent
solve that problem (this seems so familiar).

What follows is the annotated complete recursive RB insert algo-
rithm, presented for your coding pleasure. Unfortunately it is too
large for a single page.

RED-BLACK TREES PART 10

Each vertex in the tree is an object of the RB_Vertex class, which
we assume is defined so that each vertex has the following attributes:

- is_a_leaf : a Boolean values that is True if this vertex is a leaf
- colour : Red or Black - this can be implemented as

a single bit, or a string, or an integer

- value : the value to be stored in this vertex, if any

- left_child : a pointer to another RB_Vertex object

- right_child : a pointer to another RB_Vertex object

def RB_insert(T,x): # insert the value x into the Red-Black tree T
T.root = rec_RB_insert(T.root,x)
T.root.colour = Black # we always colour the root Black

def rec_RB_insert(v,x):
if (v.is_a_leaf):
return new RB_Vertex(x)
The constructor for RB_Vertex creates the vertex, colours
it Red, and gives it two empty leaves coloured Black as children
else if (v.value > x):
we recurse down the left side
v.left_child = rec_RB_insert(v.left_child,value)
now check for problems:
we check to see if v needs to play the grandparent role
and fix a Red-Red problem between its child and grandchild

Since we recursed down to the left from v, we only
need to look at its left subtree.

if (v.left_child.colour == Black):
there is no problem here, officer
(problem exists only if both child and grandchild are Red)

return v

else:
v's left child is Red, so there may be a problem.
Check the grandchildren - we know they exist because a Red vertex
must have two children

if (v.left_child.left_child.colour == Red) OR (v.left_child.right_child.colour == Red):

PROBLEM!
Now we identify the problem case
if (v.left_child.left_child.colour == Red):

3

return Left_Left_fix(v) # Note: we handle Case 1 & 2 problems

inside these "fix" methods
else:

RED-BLACK TREES PART 10 4

return Left_Right_fix(v)

else:
no problem after all
return v
else: # this is the else clause for "if (v.value > x)"

We know v.value < x so we recurse down the right side.
The logic is the same as for the left side,
just with "left" and "right" exchanged
v.right_child = rec_RB_insert(v.right_child,value)
now check for problems
we check to see if v needs to play the grandparent role
and fix a Red-Red problem between its child and grandchild
Since we recursed down to the right from v, we only
need to look at its right subtree.
if (v.right_child.colour == Black):
there is no problem here, officer
(problem exists only if both child and grandchild are Red)
return v
else:
v's right child is Red, so there may be a problem.
Check the grandchildren - we know they exist because a Red vertex
must have two children
if (v.right_child.right_child.colour == Red) OR (v.right_child.left_child.colour == Red):
PROBLEM!
Now we identify the problem case
if (v.right_child.right_child.colour == Red):
return Right_Right_fix(v) # Note: we handle Case 1 & 2 problems
inside these "fix" methods
else:
return Right_Left_fix(v)
else:
no problem after all
return v

RED-BLACK TREES PART 10 5

And now the methods that actually do the fixes:

First the fixes that apply when we recursed to the left

def Left_Left_fix(GP):
P = GP.left_child
S = GP.right_child
if S.colour == Red:

H*

We know GP’'s left child is Red, and that child’s left child is also Red
P for Parent, following the nomenclature of the figures used above
S for Sibling

H*

H*

Case 1 applies: no rotation needed
Just recolour and return
P.colour = Black
S.colour = Black
GP.colour = Red
return GP
else:

S.colour == Black, so we need to do a single rotation
We just fix the pointers appropriately

GP.left_child = P.right_child

P.right_child = GP
and fix the colours

P.colour = Black
GP.colour = Red

and return the new root of this subtree
return P

def Left_Right_fix(GP): # We know GP’s left child is Red, and that child’'s right child is also Red
P = GP.left_child
S = GP.right_child
if S.colour == Red:
Case 1 applies: no rotation needed
Just recolour and return
Black
S.colour = Black
GP.colour = Red
return GP

P.colour

else:

S.colour == Black, so we need to do a double rotation
We just fix the pointers appropriately

C = P.right_child

P.right_child = C.left_child

GP.left_child = C.right_child

C.left_child = P

C.right_child = GP

RED-BLACK TREES PART 10

and fix the colours
C.colour = Black
GP.colour = Red

and return the new root of this subtree
return C

and now the fixes that apply when we recursed to the right

def Right_Right_fix(GP):
just the mirror image of Left_Left_fix(GP) - you can write this

def Right_Left_fix(GP):
just the mirror image of Left_Right_fix(GP) - you can write this

We noted above that once we reach a point where there is no prob-
lem (either because a vertex that was just coloured Red has a Black
parent, or because we did a rotation, or because the tree was already
in good balance without any fixes) there is no more fixing to be done:
we don’t need to look for more problems at any vertices closer to the
root. This means we could terminate the insertion process immedi-
ately - but the recursive version will require us to continue to exit one
level at a time.

The advantages of the recursive version are that it is concise (if
you remove all the comment lines from the pseudo-code given above
you will see how few lines of code there actually are - see below)
and that it does not require Parent pointers - having Parent pointers
would require more update operations during each rotation. The
downside of the recursive version is that we cannot terminate the
insertion process as soon as it is safe to do so.

Neither the advantages nor the disadvantages affect the O classifi-
cation of the algorithm, but they can affect the real time performance.

O, if only there were some way to retain the advantages of the re- At least, the advantages that I perceive!
cursive method and eliminate the negatives ... but wait ... there is! We
have seen a data structure that lets us simulate recursion without ac-
tually using recursion: we can use a stack! All we need to put on
the stack are the vertices we visit during the search for the insertion

point. Then we can pop them off the stack to work back up the tree, As an exercise, try implementing the
RB insertion algorithm using a stack to
simulate recursion. If you do, you can
we can just stop. Best of both worlds! be justifiably proud of yourself.

and as soon as we know the tree is properly balanced and coloured,

6

RED-BLACK TREES PART 10 7

Deletions from RB Trees are handled in the same general way:
we do the deletion exactly as we learned for simple Binary Search
Trees, then we work back up the tree making adjustments to restore
the balance. The details are messy and we don’t cover them in these
notes.

An important restriction on RB Trees is that the values stored must
all be distinct. For example, we cannot store the values 3, 8,9, 8,5 in

a R-B tree because there are two 8s in the set. Can you see why this Think about what might happen after a

restriction is essential? rotation on a tree that contains duplicate
’ values.

RED-BLACK TREES PART 10 8§

Just the Pseudo-Code, Ma'am

HERE’s THE PsEUDO-cODE for RB-insert without all that annoying
documentation:

def RB_insert(T,x):
T.root = rec_RB_insert(T.root,Xx)
T.root.colour = Black

def rec_RB_insert(v,x):
if (v.is_a_leaf):
return new RB_Vertex(x)
else if (v.value > x):
v.left_child = rec_RB_insert(v.left_child,value)
if (v.left_child.colour == Black):
return v
else:
if (v.left_child.left_child.colour == Red) OR (v.left_child.right_child.colour == Red):
if (v.left_child.left_child.colour == Red):
return Left_Left_fix(v)
else:
return Left_Right_fix(v)
else:
return v
else:
v.right_child = rec_RB_insert(v.right_child,value)
if (v.right_child.colour == Black):
return v
else:
if (v.right_child.right_child.colour == Red) OR (v.right_child.left_child.colour == Red):
if (v.right_child.right_child.colour == Red):
return Right_Right_fix(v)
else:
return Right_Left_fix(v)
else:
return v

As promised, it is pretty concise when you consider all the different
situations it has to handle.

And now the methods that actually do the fixes:

def Left_Left_fix(GP):

P = GP.left_child

S = GP.right_child

if S.colour == Red:
P.colour = Black
S.colour = Black
GP.colour = Red
return GP

else:
GP.left_child = P.right_child
P.right_child = GP
P.colour = Black
GP.colour = Red
return P

def Left_Right_fix(GP):
P = GP.left_child
S = GP.right_child
if S.colour == Red:
P.colour = Black

S.colour = Black
GP.colour = Red
return GP

else:

C = P.right_child
P.right_child = C.left_child
GP.left_child = C.right_child
C.left_child = P
C.right_child = GP

C.colour = Black

GP.colour = Red

return C

and now the fixes that apply when we recursed to the right

def Right_Right_fix(GP):
just the mirror image of Left_Left_fix(GP)

def Right_Left fix(GP):
just the mirror image of Left_Right_fix(GP)

RED-BLACK TREES PART 10 9

	Implementation
	Just the Code

