
Hash Tables - Part 1
Robin Dawes
February 19, 2021

A
ttempts to provide a solid introduction to Hash Tables without
making an absolute hash of it.

.

Can We Do Better Than the Best Possible?

We have seen that with a balanced binary tree (such as a Red-Black
Tree) we can guarantee O(log n) worst-case time for insert, search and
delete operations. We also know that these operations are in Ω(log n)
for comparison-based algorithms - which means that balanced binary
trees give the optimum performance for these operations. Our chal-
lenge now is to try to improve on that optimum. It turns out we can ... I love the smell of a paradox in the

morning.if we change the rules.

Suppose we have data objects that consist of pairs - each pair hav-
ing a key value that is unique to the object, and some satellite data
that may or may not be be unique. For example, the data might con-
sist of "phone number, name" pairs in which each phone number must
be unique (the key), but there might be two people named "Chol-
mondeley Featherstonehaugh Marjoribanks Wriothesley" (duplicate
satellite data).

I would feel sorry for both of them
- even though their shared name is
pronounced "Chumley Fanshaw March-
banks Rotslee" which is pretty cool.

Assuming for the moment that the keys are integers, the simplest
method to store the data is in an array that has an address for each
possible key - this is called direct addressing. Then insert, search
and delete all take O(1) time - we can’t beat that! How does this avoid the Ω(log n) lower

bound that we proved earlier? The
insert, search and delete algorithms
for direct addressing never compare
elements of the set so they are not
comparison-based.

The problem of course is that the set of possible keys (we call this
the key space) may be immense - with 10-digit phone numbers there
are 1010 possible combinations, and most people have at most a couple
of hundred phone numbers in their contact list. Even if you have
every person in Canada in your contact list, creating an array with 1010

elements and only using 38,005,2381 of them is not very practical. 1 2020 Q3 estimate from https://en.

wikipedia.org/wiki/Canada

However the idea of using a simple array to store our data is very
appealing and as we shall see, with a little care and attention we can

https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Canada

hash tables - part 1 2

get good average-case complexity for our three essential operations,
even though we may not achieve optimal worst-case complexity. Here we go, changing the rules. Who

ever said we can look at average-case
complexity?Since we are introducing average-case complexity we should spend

a moment looking at balanced binary trees in this way. In a complete
binary tree (ie. one in which there are no missing children - all the
leaves are at the bottom level) - almost precisely half the vertices are at
maximum distance from the root - and that distance is basically log n.
This implies that the average insert/search/delete time is going to be
close to log n. We can make a similar argument for Red-Black Trees.

Since we are contemplating using an array that is smaller than the
set of all possible keys, we clearly need some way to map key values
onto array addresses. For example if our array (which we will call
T) has index values 0, 1, ..., 9 and our key value is 34, we need to
choose a mapping from this key value to a table address. We call this
mapping a hash function. We call the array T a hash table.

For the rest of this unit on hash tables and hash functions we will
use the following notation consistently:

m : the size of T. T has addresses 0, 1, ..., m − 1

n : the number of data objects we need to be able to store in T. If
this is not known precisely, we should at least be able to put an upper
limit on it.

h(k) : a function that takes a key value k as its argument and re-
turns a value in the range [0...m − 1]

We will spend some time later talking about how to choose h(k),
but for now we will assume the keys are non-negative integers and we
will use

h(k) = k mod m

as our hash function. So continuing the previous example, with
m = 10 and k = 34, we get h(k) = 4

The problem is that since the number of possible keys exceeds m,
h(k) is necessarily a many-to-one function. We may get collisions -
two or more keys in our set that hash to the same address. To deal
with collisions we need to define a collision resolution method.

Note that due to collisions, we must store the key value as well as
its satellite data - otherwise we cannot distinguish between the data
associated with different keys that have the same value of h(k). In

hash tables - part 1 3

almost all of the subsequent examples and discussion in these notes
we will only show the keys being stored. But in a real application we
need to store both keys and satellite data.

Collision Resolution Methods

A wide variety of collision resolution methods have been proposed.
We will briefly look at some simple but not very useful ideas and then
explore some popular and practical solutions to this problem.

A very bad method: If we are trying to insert a value k and the ad-
dress h(k) is already occupied, we simply reject the new data item.
This has the advantage of making insert/search/delete all O(1) worst
case - but it has the downside that we are frequently unable to suc-
cessfully insert new values even though there may be a lot of empty
space in T.

Another very bad method: If we are trying to insert a value k and the
address h(k) is already occupied, we overwrite h(k) with the new data
item. This has O(1) complexity for all operations, and we are always
able to insert a new value. Alas, we are likely to lose a lot of data.

Challenge: come up with a situation
where you can argue that one of the
above methods is useful.

A Good Method: Chaining

In a chained hash table, T is not used to store the data directly.
Each element of T is a pointer to the head of a linked list of objects
that have all hashed to the same location in T. If no items currently
in the set have h(k) = i, then T[i] is a nil pointer. Each data pair is
implemented as an object that contains the key value, the satellite
data, and a pointer variable that will be used to connect to the next
object in the list, if any.

Consider the three operations: Insert, Search, Delete.

Insert: It is always possible to insert a new item with key k into the
hash table. We add the new object at the head of the list attached to
its hash value address h(k) in T. This gives insertion O(1) complexity.

def insert(new_object):

hash_val = h(new_object.key)

new_object.next = T[hash_val]

T[hash_val] = new_object

hash tables - part 1 4

Search: Search is also simple: we go to the hash value address h(k)
in T and search through the list:

def search(k):

hash_val = h(k)

temp = T[hash_val]

while temp != null AND temp.key != k:

temp = temp.next

if temp != null:

return "found it"

else:

return "not found"

Of course "found it" and "not found" may not be the most useful
responses from the search algorithm. It’s more likely that we want
to do something with the item so it is better to return a pointer to the
object, or a nil pointer if we didn’t find it.

def search(k):

hash_val = h(k)

temp = T[hash_val]

while temp != nil AND temp.key != k:

temp = temp.next

return temp

Delete: Deletion is similar to searching - we just need to fix up the
pointers in the list if/when we find the item.

def delete(k):

hash_val = h(k):

temp = T[hash_val]

if temp == nil:

return

elif temp.key == k:

T[hash_val] = temp.next

else:

previous = temp

current = temp.next

while current != nil and current.key != k:

previous = current

current = current.next

if current != nil:

previous.next = current.next

hash tables - part 1 5

Since the linked lists can be arbitrarily long there is no upper limit
to the number of values that can be stored in the hash table. But the
longer the chains, the longer it will take to search and/or delete.

We will adopt the uniform hashing assumption: we assume that
our hash function h(k) maps key values uniformly onto addresses -
that is, each key is equally likely to be hashed to each address. The
validity of this assumption depends on a number of factors, including
the distribution of the keys within the key space, the size of the table,
and the hashing function itself - we will return to this issue later but
for now we will just make the assumption. In effect, this assumption
means that approximately equal number of keys will be mapped onto
each address in T.

With this assumption, the expected number of data objects in each
chain is

n
m

From this it is possible to show that the expected number Recall that n is the number of values
stored in the table, and m is the size of
the table.of steps in a search (either successful or unsuccessful) is in O

(
1 +

n
m

)
- full details of this proof can be found in CLRS. Since a delete opera-
tion requires only O(1) operations after the object has been found, the
expected time for both search and delete is in O

(
1 + n

m
)
.

Writing O
(

1 +
n
m

)
instead of just O

(n
m

)
may seem a little odd,

but here’s one way to see why it is useful: if we treat both n and m as
variables, then O

(n
m

)
can be arbitrarily close to 0. But every search

operation will take at least a constant amount of time because we have
to compute the hash value of the key. Including the 1 in the order
reflects the fact that the complexity cannot be arbitrarily small.

Nonetheless, I’m going to be lazy and write the complexity as
O
(n

m

)
... for most combinations of n and m it makes no difference.

Is it reasonable to think of n and m as variables? When we are cre-
ating our data structure we can ask this question: when the expected
number of data items to be stored is n , how big should m be to make
our operations efficient? Or looking at it another way: for given val-
ues of n and m, what is the expected search time? In these questions
both n and m are definitely variables. When building a hash table in
a real-world situation, n is most likely going to be dictated by the ap-
plication, and m would be computed from that ... but knowing how to
choose m wisely comes from considering the relationship between n,
m and efficiency (which is what we are doing now).

If you are interested in visualizations,
you could do some experimentation to
gather data for plotting average search
time as a function of n and m for the
various collision resolution methods
that we discuss.

The ratio
n
m

is called the load factor of the hash table, and we
often see the symbol α used for this. If α is high then collisions are

hash tables - part 1 6

more likely.

The downside of chaining is that indirect addressing (the pointers
we use to link together the chains) is physically slower than direct
addressing. The most popular alternative is to resolve a collision by
finding an empty address in the table and storing the new data object
there. This is called open addressing.

	Paradox
	Collision Resolution Methods
	Chaining
	Open Addressing
	Linear Probing
	Quadratic Probing

