
Hash Tables - Part 10
Robin Dawes
February 19, 2021

B
egins our examination of the Open Addressing approach to
collision resolution.

.

Open Addressing

We will look at three forms of open addressing: linear probing,
quadratic probing, and double hashing.

For open addressing we change the notation for our hash function
to include a second parameter:

h(k, i) = the address in which we try to store key k, when i lo-
cations have previously been tried for this key. So h(k, 0) is the first
address we we try, h(k, 1) is the address we try if h(k, 0) is already full,
etc.

We break h(k, i) into two independent functions like this:

h(k, i) = (h′(k) + f (k, i)) mod m

where h′(k) is a hash function as we used the term before - any
function that produces a value in the range [0...m-1]

f (k, i) is any function that produces integer values and satisfies the
requirement that f (k, 0) = 0 ∀k

Note that h(k, i) includes a final " mod m" to ensure that the value of
h(k, i) is always in the range [0...m-1] even if h′(k) + f (k, i) produces a
large value.

The search algorithm for a hash table using open addressing exam-
ines exactly the same sequence of addresses as the insert algorithm.
The search is successful if the key is found, and unsuccessful if ei-
ther an empty location is found, or all locations are examined without
finding the desired key.

hash tables - part 10 2

The sequence of addresses examined during any of the three es-
sential operations is called the probe (or probing) sequence for
that key. It should be clear that the probe sequence is completely de-
termined by the key value. Ideally, the probe sequence for each key
should contain every address in the hash table exactly once. These
probe sequences would be permutations of the set {0, ..., m− 1} ... so
there are m! possible probe sequences. We will use this to compare the
three forms of open addressing.

Linear Probing

The idea of linear probing is to resolve collisions by looking at the
addresses sequentially following the first address tried. To achieve
this we simply let f (k, i) = i.

When computing h(k, 0), h(k, 1), h(k, 2) etc, the h′(k) part never
changes, so in implementation we compute this once and then use it
as needed.

Note that we need some way to establish that an address is empty
- this is typically done by storing an illegal key value in each address
where no key has yet been stored. For example if the legal keys are all
positive integers, we can use 0 to signify "empty". Since this depends
on the actual set of possible keys I will just use "empty" in the pseudo-
code versions of the algorithms.

Linear_Probing_Insert(k):

i = 0

v = h’(k)

while (i < m):

a = (v+i) % m

if (T[a] is "empty"):

T[a] = k

break

else:

i ++

if i == m :

report "table full, insert failed"

In this pseudo-code I am using the command "report" to repre-
sent whatever action is appropriate to signal failure to complete the

hash tables - part 10 3

task. Appropriate actions might be returning a FALSE Boolean value,
setting a flag, raising an error condition, etc.

Here’s an important point to consider when writing production-
level code for hash tables. Remember that the keys are supposed to be
unique. Well, are we really going to trust some dumb user to never try
to add two data objects with the same key (or even just add the same
data object twice)? (Rule 1: never underestimate the user’s ability to
mess up your program.)

So our insert method should look something like this:

Linear_Probing_Insert(k):

i = 0

v = h’(k)

while (i < m):

a = (v+i) % m

if (T[a] == k):

report "Attempt to insert duplicate key"

break

elif (T[a] is "empty"):

T[a] = k

break

else:

i ++

if (i == m) :

report "Table full, insert failed"

Now for searching - pretty similar to inserting.:

Linear_Probing_Search(k):

i = 0

v = h’(k)

while (i < m):

a = (v + i) % m

if (T[a] is "empty"):

report "Search value not found"

break

elif (T[a] == k):

report "Found it"

else:

i ++

if (i == m):

hash tables - part 10 4

report "Search value not found"

As mentioned previously, we probably want to do something with
the data item once we find it ... so it makes more sense to return the
location. Something like this:

Linear_Probing_Search(k):

i = 0

v = h’(k)

while (i < m):

a = (v + i) % m

if (T[a] is "empty"):

report "Search value not found"

return -1

elif (T[a] == k):

return a

else:

i ++

if (i == m):

report "Search value not found"

return -1

Easy peasy, but what about deletion? The problem is that if we
delete a key value by replacing it by our "empty" flag value, then a
subsequent search for some other key might give an incorrect result
due to hitting this empty spot and stopping, when it should have
continued and found the key value.

Example: Suppose the keys are integers in the range [1 ... 20], m = 10,
and we decide to use

h′(k) =
⌊

k2

7

⌋
This h′(k) is not a good hash function.
Can you see why already?

If our first item for insertion has k = 13, the probe sequence is
4, 5, ..., 9, 0, 1, 2, 3 and we place the data in T[4]

If our second item for insertion has k = 10, the probe sequence is
again 4, 5, ...1, 2, 3 and after finding that T[4] is full we place the data
in T[5].

Now suppose we delete the first item (k = 13) and place the
"empty" flag in T[4].

hash tables - part 10 5

Now, finally, suppose we search for the second item (k = 10) . We
look in T[4], we see "empty", and we stop ... even though the desired
item is in the table.

We solve this by choosing another flag value to signify "deleted".
For example if the valid keys are all positive integers, we could use -1
as the "deleted" flag. This changes our insert algorithm a bit: we can
insert a new value into any address that is either "empty" or "deleted".

Linear_Probing_Insert(k):

i = 0

v = h’(k)

while (i < m):

a = (v+i) % m

if (T[a] == k):

report "Attempt to insert duplicate key"

break

elif (T[a] is "empty") OR (T[a] is "deleted"):

T[a] = k

break

else:

i ++

if (i == m) :

report "Table full, insert failed"

The search algorithm does not change at all! Now we can write the
delete algorithm:

Linear_Probing_Delete(k):

i = 0

v = h’(k)

while (i < m):

a = (v+i) % m

if (T[a] == k):

T[a] = "deleted"

break

elif (T[a] is "empty"):

report "delete failed - value not found"

break

else:

i ++

hash tables - part 10 6

if (i == m) :

report "delete failed - value not found"

Linear probing is quick and easy and it is guaranteed to find an
empty address if there is one. Unfortunately it is subject to a phe- Many Intertubes articles purporting to

be tutorials on hashing go no further
than linear probing ... to the potential
detriment of any readers.

nomenon called primary clustering which can negatively affect the
expected times for insertion, search and deletion. The problem is
that if (for example) 4 consecutive addresses are filled and the next
address is empty, the probability that the next address will be filled
on the next insert is higher than it should be: any key that hashes to
any of the 4 filled addresses will end up in the next one. Thus blocks
of consecutive filled addresses tend to get larger and larger, and the
number of probes needed to complete any of the three essential opera-
tions gets larger too. In the worst case we can end up with O(m) time
for each of the essential operations.

Quadratic Probing

Quadratic probing is similar to linear probing except that instead
of f (k, i) = i , we use f (k, i) = c1 ∗ i + c2 ∗ i2 , where c1 and c2 are
constants (usually but not always positive integers).

Fortunately we don’t need to come up with new algorithms for the
three essential operations! The algorithms we developed for linear
probing (using "empty" and "deleted" flag values) need only to have
the new f (k, i) function replace the one we used for linear probing.

Quadratic_Probing_Insert(k):

i = 0

v = h’(k)

while (i < m):

a = (v + c1*i + c2*i^2) % m

note: c1 and c2 would be defined externally and

shared by all three methods: insert, search, delete

if (T[a] == k):

report "Attempt to insert duplicate key"

break

elif (T[a] is "empty") or (T[a] is "deleted"):

T[a] = k

break

else:

hash tables - part 10 7

i ++

if (i == m) :

report "Table full, insert failed"

but this may be a lie - the table may not be full!

Quadratic_Probing_Search(k):

i = 0

v = h’(k)

while (i < m):

a = (v + c1*i + c2*i^2) % m

if (T[a] is "empty"):

report "Search value not found"

break

or

return -1

elif (T[a] == k):

report "Found it"

and/or

return a

else:

i ++

if (i == m):

report "Search value not found"

and/or

return -1

Quadratic_Probing_Delete(k):

i = 0

v = h’(k)

while (i < m):

a = (v + c1*i + c2*i^2) % m

if (T[a] == k):

T[a] = "deleted"

break

elif (T[a] is "empty"):

report "delete failed - value not found"

break

else:

i ++

hash tables - part 10 8

if (i == m) :

report "delete failed - value not found"

hash tables - part 10 9

Quadratic probing greatly reduces the effect of primary clustering.
To illustrate this effect, consider a simple example: let c1 = c2 = 1,
and let m = 11. Let k1 and k2 be two keys such that h′(k1) = 0 and
h′(k2) = 2. Then k1’s probe sequence is

i h(k1, i)

0 0
1 2
2 6
3 1
4 9
.

Make sure you understand how the
values in these probe sequences are
computed.Here is k2’s probe sequence

i h(k1, i)

0 2
1 4
2 8
3 3
4 0
.

Even though the probe sequences both contain 2, they go off in
different directions after that. Note that they also both contain location
0 - in k1’s probe sequence it is followed by 2. What is it followed by in
k2’s probe sequence?

When we use quadratic probing, two probe sequences may hit the
same address at any point but then hit different addresses after that.
This greatly reduces the problem of primary clustering - compare this
to linear probing, in which two probe sequences are locked together as
soon as they share a common value.

Note that with quadratic probing there is still a problem with sec-
ondary clustering: if h′(k1) = h′(k2) , the probe sequences for
k1 and k2 will be identical. Thus there are only m different probe
sequences, out of the possible m! sequences in which we could con-
ceivably probe the table. Fortunately secondary clustering is much
less of a problem than primary clustering.

But quadratic probing has a potentially much bigger problem:
unless m, c1 and c2 are carefully chosen, a probe sequence may only
include a subset of the possible addresses.

hash tables - part 10 10

Example: Let m = 12 , c1 = 1 and c2 = 1. Suppose h′(k1) = 0.
The probe sequence for k1 is 0, 2, 6, 0, 8, 6, 6, 8, 0, 6 . . . We seem to be
trapped in repeated visits to a very small set of addresses. In fact it
is easy to see that this probe sequence will never contain any odd
addresses: we have

h(k1, i) = (h′(k1) + i + i2) mod 12

= (0 + i ∗ (i + 1)) mod 12

= (i ∗ (i + 1)) mod 12

and since i ∗ (i + 1) is always even, i ∗ (i + 1) mod 12 will also
always be even - so this probe sequence will never contain any odd
addresses. Aren’t you glad you did all that modular

arithmetic in CISC-203? It is a bit more
challenging to determine whether or
not 4 and/or 10 ever occurs in the probe
sequence we have started to write out
in this example - I leave that to you as
an exercise for a rainy day with nothing
good on Disney+.

Why is this important? Suppose we are attempting to insert k1

into the hash table and all the even addresses are full but all the odd
addresses are empty. Our insert attempt will fail because k1’s probe
sequence never looks at the odd addresses - so we can’t insert the new
data even though the table is half empty. This is not good!

You may have noticed a difference between the two examples we
have done. In the first one we used m = 11 and things worked out ok.
In the second example we used m = 12 and things went sideways on
us. The difference of course is that 11 is a prime number and 12 is not.

As a simple illustration of why this is relevant, when we are com-
puting the expression c1 ∗ i + c2 ∗ i2 ... which we can write as
(c1 + c2 ∗ i) ∗ i ... there are lots of ways this can turn out to be a mul-
tiple of 12. For example, the first term can be a multiple of 3 and the
second term can be a multiple of 4 (or vice versa), or the first term can
be a multiple of 2 and the second term can be a multiple of 6 (or vice
versa), or either term can be a multiple of 12. And if this expression is
a multiple of 12, then h(k, i) becomes just h′(k) mod 12 for this value
of i. This means that h′(k) mod 12 will show up quite frequently in
the probe sequence for k. At the very least we are revisiting an ad-
dress that we have already looked at (which is a waste of time), and at
worst there is a big risk that the probe sequence will contain restrictive
patterns such as the one we saw above.

By contrast, there are relatively few ways that c1 ∗ i + c2 ∗ i2 (that
is, (c1 + c2 ∗ i) ∗ i) can turn out to be a multiple of 11: it only happens
when one or both of the terms are themselves multiples of 11. Thus
with a table size of 11 we are less likely to see probe sequences that
return to their starting points over and over such as we saw for a table
of size 12.

hash tables - part 10 11

This is just a tiny step towards a proper discussion of the best way
to choose the size of your hash table, but it suggests a solid fundamen-
tal idea: probe sequences will be less likely to fall into patterns if we
let m be a prime number.

A full discussion of the best way to choose m, c1 and c2 for quadratic
probing is beyond the scope of these notes ... but I encourage you to
do some independent reading on this topic. The number theory you
studied in CISC-203 will help you.

	Open Addressing
	Linear Probing
	Quadratic Probing

