
Hash Tables Part 100 - Choosing A Hash Function
Robin Dawes
February 19, 2021

S
uggests some desirable properties of hash functions, and uses
these to evaluate a tiny sample of the vast collection of known
hash functions.

.

What Make a Good Hash Function?

In several of our examples we used the hash function
h(k) = k mod m . This is a popular choice in a lot of introductory
discussions of hashing, partly because it is easy to understand and
implement. Unfortunately it is not necessarily a particularly good
choice.

In order to justify that statement I need to offer some criteria by
which we can judge the quality of a hash function. Alas, there is no
universally agreed-upon list of such criteria. Hash functions are used
in a wide variety of applications - properties that might be essential in
one application are undesirable in others.

I’m going to a mention a few properties of good hash functions that
seem to be generally accepted by most of the sources I have found. For
simplicity I am assuming that the keys are integers - we will discuss
using Strings as keys a bit later.

A good hash function should ...

� incorporate all the information in the key, giving equal sig-
nificance to all digits (unless some digits of the key have re-
stricted ranges).

� map the keys uniformly to the addresses [0..m-1] - that is,
approximately equal numbers of keys should map to each
address in the table.

� be fairly fast to compute - the whole purpose of using a hash
table is to have quick access to the data. If computing the hash

hash tables part 100 - choosing a hash function 2

function for each key takes a long time then we may lose this
advantage.

� be discontinuous - keys that are "very close" should not al-
ways map to addresses that are "very close". The idea here is
that if there happens to be a cluster among the keys - for ex-
ample, a group of keys that only differ in their last digit - this
should not create a cluster in the table T. This property is def-
initely not universally considered desirable - some authors go
so far as to recommend the opposite: they suggest that similar
keys should always map to similar addresses. It is not clear to
me what the supposed advantage of this might be.

k mod m

So let’s consider h(k) = k mod m in the light of these criteria.

Suppose we are working with decimal arithmetic and m = 10 .
Then it is clear that we fail the first criterion because we are simply
discarding all but the last digit of each key. Similarly if m = 2x then
we are discarding all but the last x bits of the binary representation of
k. This is not very good (although we looked at some computational
benefits when we discussed double hashing).

On the other hand, suppose we let m = 11. If our keys are integers
we can represent an arbitrary key as atat−1at−2 . . . a1a0 where the ai’s
are the digits of k.

So
k = 10tat + 10t−1at−1 + 10t−2at−2 + · · ·+ 10a1 + a0

which is equivalent to saying

k = (11− 1)tat +(11− 1)t−1at−1 +(11− 1)t−2at−2 + · · ·+(11− 1)a1 + a0

which means that

k mod 11 = ((−1)tat + (−1)t−1at−1 + · · · − a1 + a0) mod 11

Why!? Because if we multiply out (11− 1)iai each term contains
some power of 11 except for the last one (which is just (−1)iai). So
when we apply the mod m operation all the terms except the last one
just disappear.

hash tables part 100 - choosing a hash function 3

And since all powers of -1 are either -1 or 1, this simply resolves to
an expression in which each digit of k is either added or subtracted ...
so every digit of the key plays an equal role in determining the final
value.

This is kind of cool - just by changing m from 10 to 11 we can im-
prove the performance of this hash function. But it’s still not very
good ... it fails the discontinuity test. Consecutive key values will map
onto consecutive table addresses. It does well on the other two criteria:

1. If the keys are uniformly distributed in the key space, they will be
uniformly distributed across the m addresses in T

2. Computing k mod 11 can be done in O(log k) time.

You might wonder if we can pull the same trick and show that
k mod m will be kind of ok as a hash function for any k > 10 by writ-
ing

k = 10tat + 10t−1at−1 + 10t−2at−2 + · · ·+ 10a1 + a0

as

k = (m− x)tat +(m− x)t−1at−1 +(m− x)t−2at−2 + · · ·+(m− x)a1 + a0

where x = m− 10

This will give

k mod m = ((−x)tat + (−x)t−1at−1 + · · ·+−xa1 + a0) mod m

which looks good! Each digit of k is playing a role in the hash value.
But there’s still a problem. An example will show what it is.

Suppose m = 15 ... so x = 5 . The equation above becomes

k mod 15 = ((−5)tat + (−5)t−1at−1 + · · ·+−5a1 + a0) mod 15

But what happens if ai = 3 or 6 or 9 for some i ≥ 1? Then (−5)iai Remember the ai values are just the
digits of k so we can’t predict them.is a multiple of 15, so it disappears when we apply the mod 15 opera-

tion. The result is that a 3, 6 or 9 digit in k cannot contribute anything
to the value of h(k) . This is clearly not good - and it’s not immediately
obvious how we could have recognized this problem with m = 15
without going through the analysis. As an exercise, work out the details of

this problem when m = 22.

hash tables part 100 - choosing a hash function 4

So while there are values of m (such as m = 11) where each deci-
mal digit of the key contributes to the hash value, there are also many
values of where this doesn’t happen. It’s worth noting that if m > 10
and m is prime this is not an issue because none of the expanded
terms can be multiples of m - meaning they won’t disappear when we
apply mod m . This just reinforces our earlier observation that letting
m be prime is often a good idea ... not just for the purposes of collision
resolution, but also (as we now see) for the design of hash functions.

Sum of Digits

Let’s look at another very popular (and very simple) hash function:

h(k) =(sum of the digits of k)

This passes the first test (all digits contribute equally) and the third
test (fast computation).

To see that this fails the second test, suppose the keys are 10-digit
telephone numbers. There are 1010 possible keys (with a tiny fraction
of them such as 000-000-0000 ruled out because nobody gets that
phone number). The maximum possible value of h(k) in this example
is 90 (the sum of 10 digits) so every probe sequence will start with
an address in the range [0 .. 90]. If we are storing even just a few
hundred keys, very soon every single insertion will start with one or
more collisions even if the table is otherwise almost empty. This is not
good!

This hash function also fails the fourth criterion - keys that differ by
1 in any position will hash to consecutive addresses.

Fortunately the clustering problem with the "sum the digits"
method is relatively easy to fix. All we need to do is introduce a mul-
tiplier that we can apply repeatedly to the sum as we add the digits.
This will increase the range of the hash values of the keys. Ideally we
want to do this in such a way that all m addresses in T are equally
likely to be the starting point of a probe sequence. That’s hard, but
at least we can ensure that the range of hash values goes as high as
m. Let d be the number of digits in the keys, and let c be any constant
such that 9 ∗ cd−1 > m. In our phone number example, d = 10 . Sup-
pose m = 1024. We can let c = 2 since 9 ∗ 29 > 1024. A more formal
explanation of how to choose c is given by the following equivalent

hash tables part 100 - choosing a hash function 5

statements:

9cd−1 > m⇔ cd−1 >
m
9

⇔ c >
(m

9

) 1
(d−1)

Once we have chosen c, our hash function becomes

h(k):

sum = 0

for each digit x of k:

sum = sum*c + x

return sum % m # treating m as a global variable!

Note that this is really just Horner’s Rule applied to the polynomial

h(k) = (xd−1 ∗ cd−1 + xd−2 ∗ cd−2 + · · ·+ x1 ∗ c + x0) mod m

where the xi values are the digits of the key.

This will give hash values that cover the full range from 0 to m − 1
... but it still may not be ideal in that the hash values may not be com-
pletely evenly distributed in T. For example, if the maximum sum
value is only slightly larger than m, the first part of the table will be
"hit" more often. Similarly, if the maximum result is quite a bit less
than m then the last part of the table will not be "hit" at all. In an ideal
world the sum values would be evenly distributed.

The selection of an optimal value for c is outside the scope of these
notes but I recommend studying it if you are interested. For our pur-
poses it is worth noting that many people choose a prime for c when
using this hash method, on the grounds that a prime value of c is less
likely to lead to clustering among the keys. Other people make c a
power of 2 (for example, 128 seems to be popular). One reason for
this choice is that if we can perform bit level operations on integers,
multiplying by a power of 2 is just a left-shift.

hash tables part 100 - choosing a hash function 6

k2 mod m and Mid-Square

Here’s another hash function that is sometimes employed:

h(k) = k2 mod m

This violates at least two of the criteria. First, consider the last digit
of the key. We can make a table of the full relationship between the
last digit of k and the last digit of k2

Last digit of k Last digit of k2

0 0
1 1
2 4
3 9
4 6
5 5
6 6
7 9
8 4
9 1

It’s pretty obvious that even if the keys have uniformly distributed
final digits, the final digits of the squares will not be uniformly dis-
tributed.

For example, the last digit of the square
of the key will never be 3 or 7 or 8.

Now suppose our keys are 5 digit numbers. Consider the square of
12345:

12345

x 12345

61725

49380

37035

24690

12345

152399025

We can see that the last digit of the square is completely deter-
mined by the last digit of the key, and the first digit is determined by

hash tables part 100 - choosing a hash function 7

the first digit of the key (with the possibility of a carry from the sec-
ond column). Similarly the second-last digit is determined only by the
last two digits of the key, and the second digit is determined mostly
by the first two digits of the key (again, with the possibility of a carry
from the previous column).

So the digits of the key do not all contribute equally to the hash
value.

We can ameliorate this problem with a very well-known hashing
function called the Mid-Square method. As you might guess from
the name, this involves squaring k and taking only the middle digits of
the square (where "middle" needs to be carefully defined).

If we want to give equal weight to all digits of the key, it makes
sense to throw away the first digits and the last digits of the square
since these are based on just a few digits of the key. But here we have
to compromise. Based on the argument just given, the only digit of the
square that is based on all 5 digits of the key is the middle one where
we see

6

9

0

9

5

But if we throw away all the other digits of the square except the
one at the foot of this column, we end up with a one digit hash value
(in this case 9). Since we started with 105 possible keys, a hash func-
tion that only produces 10 possible hash values is not very useful.

So we include some of the digits on either side of this central digit.
It’s a trade-off: the more digits we include, the greater the range of
values we get ... but also the more bias we create by giving greater
importance to the beginning and ending digits of the key. Here we
can use information about the expected size of our data set to guide
our decision. For example, if we know that n will be under 1000, then
we can pull 3 digits out of the middle of k2 ... this gives hash values
in the range [0 ... 999] and it involves all digits of the key more or less
equally.

hash tables part 100 - choosing a hash function 8

The hash function for this example would look something like this:

mid_square(k):

s = k*k # s will have up to 10 digits

(note that if k is very small, most digits

of s will be 0)

x = s / 1000 # this gets rid of the last three digits

a = x % 1000 # this keeps just the three digits we want

return a

Once again we can see that if we do all operations at the bit level,
extracting the middle bits of the square can be done very quickly
using shifts etc.

We need to return to the point raised in the algorithm. What hap-
pens when k is small? If the keys are 5-digit integers drawn uniformly
from the range [0 ... 99999] then some of them will be so small that
when we apply the mid-square method we end up with 0. For exam-
ple, if k = 12 (ie. 00012) then s = 0000000144 and the mid-square
method gives a = 0 ... as it will for any other very small value of k.
This is not much of a problem, but it illustrates that when the key is
very small, all (or almost all) of its information is lost when we dis-
card the right-hand digits of the square.

Thus the Mid-Square method is most useful when we can be sure
that few of the keys are very small.

This is true when the keys are student
number, social insurance number,
telephone numbers, etc.

The Mid-Square method (with suitable precautions regarding small
key values) satisfies the four criteria pretty well.

Multiplication Method

We turn now to a very effective method called the multiplication
method. The basic idea is to multiply the key k by a fixed value V,
throw away the "integer part" of that product, then multiply the result
by m and throw away the "fractional part" of that - which makes it a
bit like the Mid-Square method, but in this method we get to choose
the multiplier V to try to optimize the performance of the hash func-
tion. There are different forms of the multiplication method. Here we
will use a multiplier that is between 0 and 1. This makes it very easy
to discard the parts of the numbers that we don’t want to keep:

hash tables part 100 - choosing a hash function 9

Choose a value V in the range (0...1)

The same V is used for hashing all keys

h(k):

x = fractional part of V*k

return floor(m*x)

Example: Let m = 128 , let V = 0.12397 and let k = 4982

V ∗ k = 617.61854, of which the fractional part is 0.61854

128 ∗ 0.61854 = 79.17312

b79.17312c = 79

So h(4982) = 79

Note that we don’t have to add a mod m operation to the end of
this calculation. Since 0 ≤ x < 1, bm ∗ xcmust be in the range
[0 . . . m− 1].

The choice of V is obviously important. Choosing V = 0.5 would be
very bad since x would always be either 0 or 0.5. Donald Knuth, who
writes with a great deal of authority and is usually right about such
things, says that a very good value for V is

V =

√
5− 1
2

This works out to approximately 0.61803398875 . Interestingly,
the Golden Ratio is 1.61803398875... In other words, Knuth’s magic
hashing number is the fractional part of the Golden Ratio ... and it is
also exactly equal to the inverse of the Golden Ratio. Math is cool.

Once again it is worth pointing out that if m is a power of 2 then
computing m ∗ x is just a left-shift, which can be done very quickly at
the hardware level.

The multiplication method is hugely popular.

hash tables part 100 - choosing a hash function 10

Tabulation Method

The last hash function we will look at is called tabulation hash-
ing. Its earliest form was invented by Albert Zobrist in 1969. Zobrist
used it as a method to keep track of chess-game positions.

Tabulation hashing is usually described in terms of bit-wise opera-
tions. For simplicity we will assume that all our keys are exactly b bits
in length, and that b = r ∗ t for some integers r and t - we will talk
about how to choose r and t a bit further along . We think of each key
as consisting of r blocks, each block consisting of t bits.

For example, we can think of 40-bit keys as consisting of 5 blocks of
8 bits, or 10 blocks of 4 bits, or 2 blocks of 20 bits, etc.

Let m = 2p . Thus we want to map keys in the range [0 . . . 2b − 1] to
addresses in the range [0 . . . 2p − 1]

The essential idea of the method is to use each block bi of the key to
choose a bitstring si, where the length of si is p bits. Then we XOR all Recall XOR(a, b) = 1 iff a 6= b (where a

and b are bits).the chosen bitstrings together and interpret the result as an integer in
the range [0 . . . 2p − 1].

The bitstring si is chosen based on the block value and the position
of the block in k. Thus if two blocks happen to have the same value,
they will not produce the same bitstring.

Rather than define a function to compute a bitstring for each pos-
sible block value and position in k, we establish a look-up table of
bitstrings. This increases the one-time cost of designing our function
but it makes the execution of the method extremely fast.

For the look-up table we create an array Z with 2t rows and r One row for each possible block value.

columns , and we populate each cell of Z with a randomly chosen One column for each position of the
block in k.integer in the range [0 . . . 2p − 1] (that is, a randomly chosen bitstring

of length p). The table is created once and then used for all calcula-
tions of h(k).

hash tables part 100 - choosing a hash function 11

The hash function is defined by

tabulation(k):

treat k as a string of b bits

h = bitstring consisting of p 0’s # that is, h = 000000...0

for (i = 0; i < r; i++)

x = k[i*t .. (i+1)*t-1] # x is the next block of t bits in k

row = (int) x # row is an integer in the range [0..2^t - 1]

temp = Z[row][i] # pick the bitstring in [row,i] position in Z

h = h XOR temp # XOR h and temp, giving an updated value for h

return (int) h # interpret h as an integer in the range [0..2^p - 1]

hash tables part 100 - choosing a hash function 12

Example: Let b = 40 , and choose r = 5 and t = 8 . Also, let m = 210 Whoa, 40-bit keys? Is this realistic?
Actually it is! 40 bits gets you just over
12 decimal digits, or 5 alphanumeric
characters. Since book ISBN codes are
13 digits long (and credit card numbers
have 16 digits), 40 bits may be at the low
end of realistic key sizes.

. The array Z will have 28 = 256 rows and 5 columns. Each cell will be
occupied by a randomly-chosen bitstring of length 10.

Row Block 0 Block 1 Block 2 Block 3 Block 4

0
1
2 0011000101

. . .
109 1011101001
110 0110111001
. . .
167 1111011011
. . .
235 1100111000
. . .
255

Of course the table would be completely populated with randomly
generated bitstrings of length 10. Since there are 210 = 1024 such
strings and we are filling 256 ∗ 5 = 1280 cells, there will be some
duplication. That’s ok.

Suppose k = 01101101 10100111 01101110 00000010 11101011

h is initialized to 0000000000

The first block of k is 01101101, which is the integer 109.
Z[109][0] = 1011101011 (as shown in the table above).

We XOR this with h, giving 1011101011 as the new value of h.

The second block of k is 10100111, which is the integer 167.
Z[167][1] = 1111011011

We XOR this with h, giving 0100110000 as the new value of h.

We continue, using the third block to choose a bitstring from col-
umn [2] of Z, using the fourth block to choose a bitstring from column
[3], and the last block to choose a bitstring from column [4].

I’ll let you complete the process and determine the final value of h.

This is a very good hashing function! Assuming the random bit-

hash tables part 100 - choosing a hash function 13

strings in the table are uniformly distributed, each bit of the key has
equal weight and the hash values cover the entire address space uni-
formly. The computation is fast - just type conversions, table look-up
and XOR. Finally, changing any bit of the key will potentially change
every bit of the result - it is highly discontinuous.

The choice of r and t determine the size of the table Z (it has 2t

rows and r columns). Clearly there can be options: if b = 40 we could
use a table with 240 rows and 1 column, 220 rows and 2 columns, 210

rows and 4 columns, etc all the way up to 21 rows and 40 columns.
It seems that t = 8 is a popular choice in the literature since then
each block is exactly one byte. If b is a prime or some other awkward
number we may need to pad each key with some extra bits at the end
to bring it up to a length that is easy to break into blocks.

You may be wondering why we populate the Z table with ran-
domly chosen bitstrings ... why not work out an optimal set of bit-
strings to maximize the quality of the hash function? One answer is
that the expected performance of randomly chosen bitstrings can be
shown to be very good. Since hashing is about good expected perfor-
mance, this is all we need.

Going Forward

There are hundreds (if not thousands) of other hash functions
in the literature and on the web - some simple and some complex -
and more are created every year. Hash functions and other related
functions have become essential tools in such diverse fields as cryptog-
raphy, document verification and pattern matching. I encourage you
to explore these topics.

hash tables part 100 - choosing a hash function 14

Hashing Strings

A very frequently encountered hashing situation is where the keys
are strings of characters (personal names, for example, or significant
words in a document).

Our approach will be to look at algorithms that convert strings
to integers. Once we have done that we can apply any of the hash
functions we have already looked at (or any of the limitless set of hash
functions that we did not look at).

These algorithms work on the individual characters of the string to
be hashed.

In some languages characters and integers are not distinguished.
This means we can simply do arithmetic directly on the characters.
In other languages we use a function that is typically called ord()
to find an unique integer associated with each character. You may
want to read about the history of the ASCII sequence, the UNICODE
sequence, and the ancient EBCDIC sequence.

Kernighan and Ritchie1 offer the following simple algorithm: 1 In their seminal book The C Program-
ming Language

h(s): # s is a string

a = 0

for x in s:

a += ord(x)

return a

It’s simple ... and terrible. It has all the flaws of the "sum the digits"
hash function for integers that we looked at earlier.

However, we can easily fix it the same way as we fixed that one: by
introducing a constant multiplier c and using this algorithm:

h(s): # s is a string

a = 0

for x in s:

a = a*c + ord(x)

return a

hash tables part 100 - choosing a hash function 15

A popular and widely cited version of this is credited to Dan Bern-
stein. It is reported to give excellent results.

djb2(s): # s is a string

a = 5381

for x in s:

a = a*33 + ord(x)

return a

The reasons for starting at 5381 instead of 0 and for choosing 33 as
the value of c are complex - you can read about this here:

http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm

but there is one simple thing we can note about 33. Since 33 = 32 + 1,
we can rewrite

a = a*33 + ord(x)

as

a = a*32 + a + ord(x)

and as we have observed so many times, multiplying by a power of
2 (in this case we are using 32 = 25) is just a left shift of the bits. So we
don’t actually have to do any multiplication to compute a ∗ 33 + x.

A sophisticated consideration when hashing strings that are En-
glish words is that the letters of the alphabet are not distributed
equally in common words, and not distributed equally in certain po-
sitions in the words. For example the letter "e" shows up far more
frequently than the letter "z" - a hash function might be designed to
downplay the significance of "e" and increase the significance of "z" in
a word.

Similarly the distribution of letters that occur as the first letter of
words is extremely non-uniform: comparatively few words start with
"j", and hardly any start with "x", whereas there are many thousands
of words that start with "t". A function that converts words into (hope-
fully unique) integers might emphasize positions, letters (and even
combinations of letters) that distinguish words from each other.

 http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm

	Hash Functions
	k mod m
	Sum of Digits
	k2 mod m and Mid-Square
	Multiplication Method
	Tabulation Method
	Going Forward
	Hash Functions for Strings

