
Beauty In the Eye 1 1 ... is worth a bee in the hand!

Robin Dawes
October 17, 2021

R
udolf Bayer spent a lot of time thinking about trees. We’ve
studied his most famous creation (Red-Black Trees) already,
and in these notes we will climb into one of his earlier designs:

B-Trees.

Setting the Scene

Since the earliest days of computing we have struggled with the
problem of managing quantities of data that exceed the internal capac-
ity of our computers. With hardware accelerations and ever-cheaper
memory the issues have receded somewhat for the everyday user, but
the optimal use of external storage is still important for very large data
sets.

Let’s suppose we have a very large collection of large data objects,
each with an unique key. An illustration of this would be a set of med-
ical records. For each patient there is an unique healthcard number,
and the quantity of information for each patient might be very large,
listing all of the patient’s health history, including x-ray images etc.

The goal is to find a given patient’s records quickly.

The key issue is access-time. In the very old days, external storage
was largely tape-based. We’ve all seen images and movies featuring
banks of huge tape drives with the tapes whirring back and forth. In the days before colourful screens,

computers were mostly just immobile
boxes with a few blinking lights - the
tape drives were usually the only visibly
active devices in a computer room. It’s
no surprise that photographers and
film-makers focused on them.

Slightly more recently, enormous hard-drives with stacks of disks in
them became the storage medium of choice.

With tape drives and mechanical disk drives, before we can read
stored data the read/write head must be positioned over the requested
data. Long moves or frequent moves of the r/w head can easily be-
come the bottle-neck of an algorithm if the data is not carefully orga-
nized on the device. Note that this is never a concern for data

structures that are completely stored in
internal memory (RAM). By definition,
RAM provides constant time access to
all memory locations.

When reading data from an external device, there is typically a
hardware-dependent limit on the amount of data that can be trans-
ferred in a single operation. We can call this a block.

beauty in the eye 2

We will assume that our records are large enough that each block
can only hold a few records. The question to be answered is: what is
the best way to arrange the records in blocks so as to minimize the
number of blocks we must access to find a particular record?

A B-Tree is an k-ary tree in which each vertex can have up to k chil-
dren for some integer k. There are some more rules which we will
introduce as we go along.

In a B-Tree, each vertex of the tree occupies a single block on the ex-
ternal device. This means that each vertex can contain several records.
As a tree vertex, the block must also contain links to its children. We
will assume that these links are identifiers for other blocks on the stor-
age device, and that they are minimal in size (and therefore do not
need to be accounted for in the allocation of space in the block). We
will (as usual) represent links to other vertices as arrows.

A vertex of a B-Tree looks like this. A non-leaf vertex always has
1 more children than the number of records it contains. Leaf vertices Example: If the vertex contains 7

records, it must have 8 children.contain records but have no children. The records contained in the
vertex are stored in the block in sequential order from smallest to
largest key. We can visualize the links to the children as alternating
with the stored records - the first child link points to a subtree contain-
ing keys < the first stored record, the link between the first and second
stored records points to a subtree containing all keys > the first stored
record and < the second stored record, and so on. The final child link
points to a subtree containing keys > the last stored record.

When we search the tree for a particular record we use a general-
ized version of the binary search algorithm. We first look at the root

beauty in the eye 3

vertex (i.e. we load that block) and check the records in that block to
see if one of them is the one we want. If not, the record we want must
be in one of the subtrees so we use the child link to determine which
block to load next. We know which block to load by comparing the
key for the desired record to the key values in the records stored in
this block. We repeat the search process on the newly loaded block.

Like Red-Black Trees, B-Trees are balanced and therefore have
O(log n) height. However, the balancing method is completely differ-
ent. To describe this aspect of the data structure, we need to introduce
some more restrictions on the B-Tree vertices:

Let m be the maximum number of records a vertex can hold. Remember, this is dictated by the size
of the records and the size of a storage
block.1. Every non-leaf vertex except the root must contain at least

⌊m
2

⌋
records and no more than m records.

2. The root can contain between 1 and m records.

B-Tree Insertion

The algorithm for adding a new record to a B-Tree starts out in famil-
iar fashion. We follow the branches of the tree until we find the proper
leaf that the new record should be added to.

If the leaf contains fewer than m records, we add the new record in
its proper place in the vertex, and we are done.

However, if the leaf already contains m records, it has no room to
add another record. In this case:

1. Let {R1, R2, . . . Rm, Rm+1} be the set of records already in the
leaf, plus the new record being added. Let these records be
numbered in order by key (i.e. R_1.key < R_2.key, etc.)

2. Let mid =

⌈
m + 1

2

⌉
3. Create a new leaf vertex and move {R1, . . . Rmid−1} to the new

leaf

4. Keep {Rmid+1, . . . , Rm+1} in the original leaf

5. Add Rmid to the parent of the leaf, and add the new leaf as a
new child of that parent.

beauty in the eye 4

This finishes the job unless the parent was also "full"2. In this case 2 i.e. it already contained m records

we apply exactly the same splitting operation on this vertex and push
a record up to the level above. This split-and-push-one-record-up
sequence can propagate all the way back to the root. If we have to
split the root we do that, then create a new root containing just the
"pushed-up" record from the old root.

Repeating the above, but with figures!

If Vertex v has room for another record, we simply insert the new
record into the vertex.

But if v already contains m records, we put the m + 1 records that
belong in vertex v (the m already there, plus the new one) into as-
cending order, and let mid refer to the one in the middle. We promote
mid to the parent, and split the remaining m records into two leaves, as
children of the parent. The result is this:

beauty in the eye 5

The new record is either in vertex v1, or in vertex v2, or it is mid
and new resides in the parent of these vertices. Each of v1 and v2
contains a legal number of records.

If the vertex to which we have just added mid is now over-full, we
perform exactly the same split-and-push-one-record-up operation on
this record. If the split-and-push-one-record-up sequence propagates
all the way back to the root, the tree ends up being one level taller
than before because the root gets split in two and a new root is added
above it. This is the only way a B-tree can get taller.

B-Tree Deletion

The algorithm for removing a record is messier than the insertion
algorithm. There are multiple cases and complicated sequences of
operations, and we won’t go into details here. The basic idea is that if
removing a record makes a vertex too small3 then we attempt to move 3 i.e. it now contains fewer than

⌊m
2

⌋
recordsrecords around between the vertex and its children to restore the tree.

If that is not possible, we combine small vertices into proper sized
vertices. As with the insertion algorithm these changes can propagate
up the tree, potentially reaching the root and reducing the height of
the tree.

beauty in the eye 6

Performance of B-Trees

Let n be the number of records in a B-tree T. Because each internal
vertex (except the root) must have at least

⌊m
2

⌋
records, and therefore

at least
⌊m

2

⌋
+ 1 children, each level of the tree (except the level just

below the root) contains at least
⌊m

2

⌋
+ 1 times as many vertices as the

level above it, and each of those vertices contains at least
⌊m

2

⌋
records.

Since every vertex except the root must contain at least
⌊m

2

⌋
records,

we can see that the number of vertices cannot exceed ≈ n
m
2
=

2n
m

Let k be the height of the B-tree. There is 1 vertex at the top level
(the root), at least 2 at the second level, at least 2 ∗ (

⌊m
2

⌋
+ 1) at the

third level, and then at least 2 ∗ (
⌊m

2

⌋
+ 1)i−2 vertices at level i there-

after. So the number of vertices is at least

3 + 2 ∗
k

∑
i=3

(⌊m
2

⌋
+ 1
)i−2

Combining these bounds on the number of vertices gives

3 + 2 ∗
k

∑
i=3

(⌊m
2

⌋
+ 1
)i−2

≤ 2n
m

Let’s ignore the "3" as an irrelevant constant4. This gives 4 How convenient! It’s a good thing
I’m not writing a math textbook! But
we know we are heading towards
a O classification in which constant
terms are discarded, so I’m really just
dropping it early rather than late.

k

∑
i=3

(⌊m
2

⌋
+ 1
)i−2

≤ n
m

Note that the lhs is ≥
(⌊m

2

⌋
+ 1
)k−2

so we have

(⌊m
2

⌋
+ 1
)k−2

≤ n
m

Take the log of both sides in base
(⌊m

2

⌋
+ 1
)

k− 2 ≤ log(⌊m
2

⌋
+1
) (n

m

)

In other words, k ∈ O
(

log
n
m

)
and since m is a constant (for this

beauty in the eye 7

B-tree), we conclude (finally!!!) that B-trees are guaranteed to have
height in O(log n), as claimed.

	Setting the Scene
	B-Tree Insertion
	B-Tree Deletion
	Performance of B-Trees

