
Great Oaks From Little Acorns Grow
Robin Dawes
October 4, 2021

You will implement a Binary Search Tree class, build a lot of trees,
and analyse their height.

.

Define a Binary Search Tree Class

In the language of your choice create a complete implementation as long as it’s one of Python, Java, C or
C++of a binary search tree class for storing sets of integers. Your class’s

interface must provide five functions:

- a constructor that returns a reference to a new, empty Binary
Search Tree

- an instance function insert(x) that adds integer x to the tree
(duplicates allowed)

- an instance function search(x) that returns a reference to a
vertex in the tree that contains x, or a null (nil, none) refer-
ence if x is not in the tree

- an instance function remove(x) that removes integer x from
the tree. If the tree contains multiple instances of x, only one
instance of x is removed. If the tree contains no instances of x,
the tree is unchanged

- an instance function height() that returns the number of
levels in the tree

great oaks from little acorns grow 2

Example of Use: The pseudo-code shown here illustrates the use of
these functions.

...

my_tree = BST() # calling the constructor ... syntax will depend on your language

my_tree.add(7)

my_tree.add(7)

my_tree.add(10)

my_tree.add(8)

my_tree.add(9)

h = my_tree.height()

my_tree.remove(10)

my_tree.add(4)

etc.

The details of the implementation are up to you. You may define
the functions iteratively, recursively, or with a hybrid of the two. You
are welcome to make use of the pseudo-code provided in the class
notes.

Experiment

The reason balanced binary trees were created is to allow us to such as the Red-Black Trees we will
cover in classensure that the height of a binary search tree holding n values will

always be in O(log n). In fact, Red-Black trees guarantee a height of
≤ 2 ∗ log n.

The need for this guarantee is debatable. It is certainly true that
some binary search trees can have O(n) levels, but it seems plausible
that for large values of n these pathological trees may be quite rare in
practice.

In this experiment you will generate a set of trees on n vertices, for
increasing values of n. Within each set, you will compute the average
height and collect other height-related information. You will then
analyse your collected data to answer some research questions.

great oaks from little acorns grow 3

Experimental Procedure

for n in {1000, 2000, 4000, 8000, 16000}:

for i = 1 to 500:

construct a BST containing the values {1, ..., n*1.5}, inserted in a randomly chosen order

perform a sequence of n/2 remove operations

(removing randomly selected values that actually are in the tree)

this results in a tree with exactly n vertices

compute the height of this tree and add it to a collection of heights of all your

trees on n vertices

compute the minimum height, the maximum height, and the average height

of all the generated trees on n vertices

express the average height as k*log n for some k

express the average height as t*n for some t

compute the percentage of trees on n vertices whose height is >= n/2

Presentation of Results

Create a table or graph showing the k value, the t value, and the per-
centage of tall trees for each of the specified values of n, as calculated
by your experiment.

Research Questions

1. As n increases, does the average height appear to grow at a loga-
rithmic rate, a linear rate, or something else?

2. Does the percentage of tall trees (height >= n/2) grow, shrink, or
remain fairly constant as n increases?

What Do I Submit?

Please submit your source code for the Class and the experiment, your
tabular or graphical presentation of your experimental results, and
your answers to the two research questions.

great oaks from little acorns grow 4

Due Date

The assignment was originally due on 20211008. This date has been
changed. The assignment is now due at 11:59 PM on 20211018.

	Define a Binary Search Tree Class
	Experiment
	What Do I Submit?

