
Complexity Analysis1 1 More than just a Theory ...

Robin Dawes
November 1, 2021

I
ntroduces an essential tool that computer scientists use to
compare and classify algorithms.

.

Measuring the Running Time of an Algorithm

In the early days of computing people discussed the efficiency of
an algorithm by reporting the measured execution time of the algo-
rithm. This is unsatisfactory when it comes to comparing different
algorithms, due to the many factors that can affect the outcome: the
processor, the operating system, the language of implementation, the
compiler used, the IDE, the amount of memory available, the active
background processes (updates, system maintenance, etc.) and oth-
ers.

A better approach is to use a measurement that ignores all of those
external factors and focuses on the number of operations required to
execute the algorithm. However, even that involves some ambiguity:
different programmers may implement an algorithm in slightly differ-
ent ways, resulting in different numbers of operations. How can we
tell if we are measuring the very best version of an algorithm?

The preferred method in use today measures the growth rate of the
execution time, rather than the execution time itself. By growth rate,
we mean this:

Let A be an algorithm. Let n be the size of the input to A (for ex-
ample, n might be the length of a list of numbers that the algorithm
will act on). Let TA(n) be a function that counts the number of opera-
tions A will execute when the input has size n. The question we want
to answer is this. As n increases, how quickly (or slowly) does TA(n)
increase?

For example, if we double n, does TA(n) also double? Or does it
grow by a factor of more than 2, or less than 2?

First, we make a pretty strong assumption: we assume that all basic



complexity analysis 2

operations (arithmetic, boolean operations, comparisons, flow control,
assignment, input a value, output a value, function calls, etc.) take
equal and constant time. With this assumption, we can justify the
"counting operations instead of measuring time" approach.

Some examples in a more-or-less Pythony pseudocode ...

Algorithm A1 :
read (n) # reads an in t ege r from somewhere
x = 1
for i in range (n ) :

x = (x + 2) ∗ i
p r in t (x)

The first, second and final statements each involve 1 operation and
they are each executed once. The statement inside the loop includes 3
operations and is executed n times. The "for i in range(n):" instruction
creates several operations (assigning an initial value to i, increment-
ing i, making sure i doesn’t go beyond n-1, etc. ) some of which are
performed once and some of which are performed n times.

Without doing an exact count, what we can say is that executing
this algorithm includes some operations that are done once, and some
operations that are done n times. If we let TA1(n) represent the total
number of operations when the input is n, then

TA1(n) = c1 ∗ n + c2

for some fixed values of c1 and c2

It turns out that this is all we need to answer the question about the
growth rate. Consider this table:

n TA1(n) = c1 ∗ n + c2

1 c1 + c2

2 c1 ∗ 2 + c2

4 c1 ∗ 4 + c2

8 c1 ∗ 8 + c2

16 c1 ∗ 16 + c2

etc. etc.
What we see in this table is that when n doubles, the part of TA1(n)

that actually involves n also doubles. Regardless of what c2 is, we
will eventually reach a value of n where c1 ∗ n > c2, and from then



complexity analysis 3

on the difference between c1 ∗ n and c2 will get greater and greater.
Eventually we will reach a point where c2 is insignificant. At that
point we will be able to say that when n doubles, TA1(n) also (almost)
doubles.

Note that everything in the previous paragraph is true, no matter
what the values of c1 and c2 are. So consider this algorithm:
Algorithm A2 :

read (n) # reads an in t ege r from somewhere
x = 1
y = 2
for i in range (n+10):

x = (y ∗ x + 2)∗(x − y)
y = y + 1

for i in range (n+50):
x = x − i
y = x + y
pr in t (x)
pr in t (y)

You should be able to convince yourself that even though A1 and
A2 differ in a lot of details, the time function for A2 can be written as

TA2(n) = c3 ∗ n + c4

which looks exactly like the definition of TA1(n) (except for c3 and
c4 instead of c1 and c2). This means that a table of n and TA2(n) would
show exactly the same behaviour as the table for TA1(n) : when n
doubles, TA2(n) also (almost) doubles.

Now consider this algorithm:
Algorithm A3 :

read (n) # reads an in t ege r from somewhere
x = 1
y = 2
for i in range (n ) :

x = (y ∗ x + 2)∗(x − y)
for j in range (n ) :

y = y + 1
pr in t (x)
pr in t (y)

It should be clear that the time function for this algorithm will look
like this:



complexity analysis 4

TA3(n) = c5 ∗ n2 + c6 ∗ n + c7

for some specific c5, c6 and c7

To get a feeling for the growth rate of TA3(n), let’s make a table like
the one we made before:

n TA3(n) = c5 ∗ n2 + c6 ∗ n + c7

1 c5 + c6 + c7

2 c5 ∗ 4 + c6 ∗ 2 + c7

4 c5 ∗ 16 + c6 ∗ 4 + c7

8 c5 ∗ 64 + c6 ∗ 8 + c7

16 c5 ∗ 256 + c6 ∗ 16 + c7

etc. etc.

Once again we can see that even if c6 and c7 are very large numbers,
eventually the rapidly growing multiplier for c5 will make the first
term larger than the sum of the other two terms, and its dominance
only gets larger and larger as n continues to grow.

Consider what happens to TA3(n) when n goes from n = k to
n = 2k (i.e. when n doubles). TA3(n) goes from (about) c5 ∗ k2 to
(about) c5 ∗ (2 ∗ k)2, which is equal to c5 ∗ 4 ∗ k2. We can see that the
growth rate of TA3(n) is the square of the growth rate of n.

We can easily (and correctly) extrapolate from this: If an algorithm
A has a time function that looks like this:

TA(n) = ck ∗ nk + ck−1 ∗ nk−1 + . . . c1 ∗ n + c0

then for sufficiently large values of n, when n doubles, TA(n) will
increase by a factor of (about) 2k

We can also observe that there is nothing magical or essential about
doubling n in the tables shown above. If we triple n (i.e. if we look
at n = 1, 3, 9, 27...) then the values of TA1(n) and TA2(n) will also
triple (same growth rate as n), and the values of TA3(n) will grow by
a factor of 9 (the square of the growth rate of n).

This analysis illustrates why we never have to do an exact count of
the number of operations in an algorithm. The growth rate of the time
function is independent of the exact number of operations - it depends
on the highest power of n in the function.



complexity analysis 5

Big-O Notation

What we need now is some simple notation to summarize this. The
notation we use is called "Order Notation" or "Big-O Notation". I ac-
tually prefer to call this "Big-O Classification" because that is what
we will use it for: we are going to group algorithms together into sets
based on the growth rate of their time functions.

Definition: Let f (n) and g(n) be functions. Then we say
" f (n) is in Order(g(n))" or " " f (n) ∈ O(g(n))"
if there exist values n0 and c such that ∀n ≥ n0, f (n) ≤ c ∗ g(n)

Example 1: Let f (n) = 7n + 50 and g(n) = n

Let c = 8 . It is easy to show that ∀n ≥ 51, f (n) ≤ 8n. Thus there
exist values of c and n0 that satisfy the requirement, so f (n) ∈ O(n)

Note that the choice of c = 8 is not unique. We could have used
c = 9, c = 7.01, c = 2000 . . . basically any value of c > 7 lets us find an
appropriate n0.

Example 2: Let f (n) = c2n2 + c1n + c0. I claim that f (n) ∈ O(n2)

Proof: Let c = c2 + 1. We need only show that there exists an appro-
priate value for n0 such that ∀n ≥ n0, f (n) ≤ (c2 + 1)n2

We can simplify this inequality:

f (n) ≤ (c2 + 1)n2

c2n2 + c1n + c0 ≤ c2n2 + n2

c1n + c0 ≤ n2

c0 ≤ n(n− c1)

We see that the right hand side is postive and increases without
limit when n > c1, whereas the left hand side is fixed. Thus there
must be a value of n0 such that ∀n ≥ n0, the just-stated inequality is
satisfied. This completes the demonstration that f (n) ∈ O(n2)

These two examples can be generalized into the following very
useful theorem, which I present without proof. The proof is just a more general version

of the argument I used in Example 2.
Theorem:

Let f (n) = cknk + ck−1nk−1 + · · ·+ c1n + c0. Then f (n) ∈ O(nk)



complexity analysis 6

What Do We Do With It?

Remember, our goal is to find a simple way to compare algorithms
that will be independent of extraneous details. We’re close to achiev-
ing that.

Suppose A1 and A2 are two algorithms that solve exactly the same
problem. Further, suppose that we have determined that the time
function for A1 is Ta1(n) = c1n + c0 and the time function for A2 is
TA2(n) = c4n2 + c3n + c2. What can we say about A1 compared to A2?

We know TA1(n) ∈ O(n) and TA2(n) ∈ O(n2). This suggests that
TA1(n) grows slower than TA2(n), which implies that once we get
past some (possibly large) value of n, TA1(n) will always be less than
TA2(n), i.e. A1 will be faster than A2

This is pretty much exactly the conclusion we want to make, so be
sure you understand it. Unfortunately, there is one more thing we need
to work out before we can say we are done.

Let’s continue with A1 and A2. We know ∃n0 and c � ∀n ≥
n0, TA1(n) ≤ cn.

But consider this: n ≤ n2 so cn ≤ cn2 ... and thus it is completely
accurate to say that TA1(n) ∈ O(n2) And we can also say that TA1 (n) ∈

O(n3), and O(n4), O(n5), etc.
But wait ... didn’t we just a minute ago say we prefer A1 over A2

because TA1 n ∈ O(n) and TA2(n) ∈ O(n2)? Now we’re saying that
both TA1 and TA2(n) are in O(n2) ... doesn’t that mean that we have no
reason to prefer one of them over the other? Has it all been a waste of
time?

Happily, the answer to those questions is "no": we do have good
reason to prefer A1 over A2, and therefore it has not been a waste of
time.

It is true that both of these algorithms are in O(n2), but only one of More precisely, their time functions are in
O(n2)them is in O(n)!

Some people2 claim that you cannot prove a negative. But you can 2 including Scott Adams, the creator
of Dilbert ... who really should know
better!of course, and we will now prove that TA2(n) /∈ O(n)

Suppose TA2(n) ∈ O(n)

That implies ∃n0 and c � ∀n ≥ n0, TA2(n) ≤ cn



complexity analysis 7

⇒ ∀n ≥ n0, c4n2 + c3n + c2 ≤ cn

⇒ ∀n ≥ n0, c4n2 + (c3 − c)n + c2 ≤ 0

⇒ ∀n ≥ n0, (c4n + c3 − c)n + c2 ≤ 0

⇒ ∀n ≥ n0, (c4n + c3 − c)n ≤ −c2

But for all values of n >

⌊
c3 − c

c4

⌋
, the left side is positive and

increasing, while the right side is constant. Thus no matter what c2 is,
eventually the left side will be > −c2 and the statement will be false.

Thus there does not exist any such n0, and thus TA2 /∈ O(n)

And now finally we can make our assertion with complete confi-
dence: There exists some value x such that ∀n ≥ x, TA1(n) ≤ TA2(n)
... in other words, when n is sufficiently large, A1 is faster than A2

A Note on Standard Usage

We adopt a simple convention to avoid having to go through that kind
of effort every time we want to compare two algorithms:

Convention: When we state f (n) ∈ O(g(n)), we are also asserting
that f (n) is not in any lower complexity class ... i.e. we are asserting
that g(n) is the smallest function that gives an upper bound on the
growth rate of f (n).

For simple time functions of the form TA(n) = cknk + . . . c1n + c0,
we know that we can state TA(n) ∈ O(nk) and it is easy to show that
this is the lowest complexity class to which TA(n) belongs.


	Measuring the Running Time of an Algorithm
	Big-O Notation
	What Do We Do With It?
	A Note on Standard Usage

