Complexity Analysis Part 2!
Robin Dawes
November 14, 2021

N § ONTINUES our introduction to the use of O-classes to describe the
Y . . .
! running time of algorithms.

For Loops ... Got It. What About While Loops?

So FAR we have seen how to determine the O() class of an algorithm
that contains one or more for loops. We established the technique of
assigning the algorithm to the O() class of the highest power of 1 (the
input size) in the time function that we derive by determining how
many times each statement is executed. We saw that this process is
greatly simplified by identifying the statement or operation that is
executed the most often, and then ignoring everything else.

The process can be more difficult with while loops because it may
not be immediately obvious how many times the loop will execute.

Sometimes it’s easy:

read (n)

while (n > 1):
n=n-1
print(n)

It’s pretty easy to see that this loop executes n-1 times, so the algo-
rithm is € O(n)

But consider this:

read (n)

while (n > 1):
n=n=x 0.9
print(n)

When n = 10, this loop executes 22 times ... it’s not obvious how
we could predict that. When n = 20, the loop executes 29 times, and

! More than just a Theory ...

There is a way ... but it involves

... math!



COMPLEXITY ANALYSIS PART 2

when n = 40, it executes 36 times. There is a pattern here, and we will
come back to it.

And consider this:

read (n)
while (n > 1):
print(n)

This either loops 0 times (when the input value is <= 1) or it loops
forever! What's the order class for that? There isn’t one!

Let’s go back to the second example - the one where n is multiplied
by 0.9 on each iteration of the loop. Here’s how we can actually figure
out the number of times the loop will execute.

I'm going to use n, to represent the starting value of n After the first
iteration, the value of n is ns * 0.9. After the second iteration, n has
the value 15 * 0.92. In general, after the loop iterates i times, 7 has the
value 7 x 0.9

The last iteration will be the one that reduces n to <= 1. In other
words, the loop will end after the k" iteration when 1 % 0.9 < 1.
Now we just have to figure out k

ng % 0.9 < 1

ne < ——
* = 0.9k
10
nsS?

1
k
log% ns <k

In other words, k is the smallest integer > log o 715
9

This may look a bit strange ... we might not be used to seeing a
fraction used as the base of the log function, but in fact it is possible

use any positive number other than 1 as a logarithmic base. In this In practical computing problems we

. 10 almost always work with log
example, the necessary base - derived as shown above - is 9 2

log%o (10) = 21.854 and so the smallest integer > 21.854 is 22 ... Check it out here: https: //vww.

which is exactly the number of times the loop executes when n = 10 omnicalculator. com/math/tog

In fact, this while loop always executes {log 1 (n)—‘ times, and we


https://www.omnicalculator.com/math/log
https://www.omnicalculator.com/math/log

can conclude that the algorithm is € O(log i (n)). In fact we can make
this simpler. Because of the way logs work, the log of n in any base

is just a constant multiple of the log of n in any other base. And as we
know, O-classification always ignores constant multiples. So when we
arrive at a complexity classification like the one we are working with
here, we simply ignore the base completely and just write O(logn).

Here are the general rules for the while loops we have looked at:

If a while loop reduces the value of its test variable by a constant (such
asn = n - 5)and terminates when the variable drops below a partic-
ular value, the loop is in O(n).

If a while loops reduces the value of its test variable by a constant mul-
tiplier (suchasn = n / 2) and terminates when the variable drops
below a particular value, the loop is in O(logn).

The bottom line is that while loops are more flexible than for loops
and so they can be harder to analyse, but with a bit of effort we can
often work it out.

Exercise: What is the complexity class of this:

read (n)

x =1

while (x < n):
x = x*1.3
print(x)

Exercise: What is the complexity class of this:

read (n)

x =0

while (x < n):
x=x+ 3
print(x)

COMPLEXITY ANALYSIS PART 2

n =mn/2isthesameasn =n*0.5

3



Ok, What About Algorithms with Branches?

So FAR we have seen how to determine the O() class of an algorithm
that contains for loops and/or while loops. But most non-trivial algo-
rithms involve some if and else situations - what about those?

read (n)
if n % 3 = 0:
print(n)
elif n % 3 == 1:
for i in range(n):
print (i)
else:
for i in range(n):
for j in range(n):
print(i,j)

This algorithm has three possible behaviours - how can we deter-
mine its complexity class?

The answer is: O-classification is completely pessimistic - we al-
ways assume the worst will happen. In terms of classifying the run-
ning time of an algorithm, we always assume that the most complex
(i.e. highest complexity) branch will be chosen. So the algorithm just
above is considered to be € O(n?).

This approach? makes sense if we are writing software that abso-
lutely has to be fast, all the time. An autonomous car’s software mod-
ule that detects obstacles in the road is useless if it works quickly 75%
of the time but is very slow the other 25% of the time. O-classification
extends this policy to all algorithms - it puts an upper bound on the
worst-case growth rate for the execution time.

We've talked about the complexity of algorithms containing for
loops, while loops and if-else statements. There is one significant type
of algorithm we haven’t touched yet: recursive algorithms. That’s
coming up next.

COMPLEXITY ANALYSIS PART 2 4

2 which we call WORST-CASE ANALYSIS

In later courses you will study average-
case complexity and amortized com-
plexity, which analyze whether or not an
algorithm is fast most of the time.



	For Loops ... Got It. What About While Loops?
	Ok, What About Algorithms with Branches?

