
Complexity Analysis Part 31 1 More than just a Theory ...

Robin Dawes
November 14, 2021

I
nwhich we turn our minds to the problem of finding the O-
classification for recursive algorithms and find the solution to
be a method that rewards the ability to recognize patterns.

Recurrence Relations

We have seen how to compute the O complexity of programs that
involve loops, sequences of operations, and if statements. Now we
need to look at recursive functions.

Consider this recursive function:

def f a c t o r i a l _ r e c (n) :
i f n == 1 :

re turn 1
e l s e :

re turn n∗ f a c t o r i a l _ r e c (n−1)

It clearly makes sense to talk about the number of steps this func-
tion executes - there is no randomness or unpredictability involved.
Executing a line like

x = factorial_rec(3)

will always take the same number of steps, and

y = factorial_rec(7)

will obviously take more steps than

x = factorial_rec(6)

So there is a relationship between the size of the argument passed
to the function and the number of steps that are executed ... but what
is the relationship?

We will use T(n) to represent the number of steps factorial_rec(n)

complexity analysis part 3 2

executes. By looking at the definition of factorial_rec(n) we can iden-
tify two cases:

1) if n = 1, factorial_rec executes a constant number of steps - call it
c1. This lets us state

T(1) = c1

2) if n > 1, factorial_rec executes a constant number of steps - call it
c2 - followed by a recursive call: factorial_rec(n-1). But this recursive
call must take T(n− 1) steps (however many that is), so we can state

T(n) = c2 + T(n− 1) ∀ n > 1

Putting these two things together gives us a recurrence relation:

T(1) = c1

T(n) = c2 + T(n− 1) ∀ n > 1

Note the strong similarity between the form of the recurrence rela-
tion, the form of the recursive function, and the form of an inductive
proof. They each have a base case and a recursive/inductive part that
uses the result for smaller numbers to obtain the result for larger num-
bers. Induction, recursion and recurrence relations - they all use sim-
ilar thought patterns - are all part of learning to think like a computer
scientist.

That’s all well and good, but we need to establish the O complexity
of factorial_rec, and that recurrence relation doesn’t look anything like
the functions we have dealt with before.

We deal with this by transforming the reccurence relation into a
closed-form formula : one which does not involve any self-reference.
There are many ways to achieve this. We will use one of the most
popular, which goes by the name of expansion or substitution. The
basic idea is this: we replace the recursive reference to T(n − 1) by
something of equal value ... but what?

The Substitution Method

Consider rewriting the recursive part of the recurrence relation as
T(x) = c2 + T(x− 1). This is clearly still valid - we just changed the n
to x. Now let x = n− 1, and substitute this into the equation for T(x) -
we get

complexity analysis part 3 3

T(n− 1) = c2 + T(n− 1− 1)

i.e.

T(n− 1) = c2 + T(n− 2)

So we substitute this into T(n) = c2 + T(n− 1) and get

T(n) = c2 + c2 + T(n− 2)

Now we expand T(n− 2) to c2 + T(n− 3), and substitute that into
the line just above this one, and we get

T(n) = c2 + c2 + c2 + T(n− 3)

The next expansion gives

T(n) = c2 + c2 + c2 + c2 + T(n− 4)

Now we look for a pattern ... and it’s pretty easy to spot. When
the term inside the T() expression on the right hand side is n− i, the
number of c2’s is exactly i

So the ith line of the expansion is

T(n) = c2 ∗ i + T(n− i)

Eventually we will get to

T(n) = c2 ∗ x + T(1) for some x

i.e.

T(n) = c2 ∗ x + c1

We have successfully eliminated the recursive reference to T(n− 1).
The question is, what is x?

The final expansion must fit the general pattern, so if the the multi-
ple of c2 is x, the recursive self-reference must be T(n− x)

This gives us n− x = 1, which is equivalent to x = n− 1

Thus

T(n) = c2 ∗ (n− 1) + c1

complexity analysis part 3 4

But that’s something for which we can easily find the Big O classifi-
cation. Applying what we have already learned, we get

T(n) ∈ O(n)

We will look at several recurrence relations and for each one we
will determine its O complexity. You should learn these. Here again is
the one we have just seen:

Recurrence Relation O Classification
T(1) = c1

T(n) = c2 + T(n− 1)
O(n)

Another Example

Now consider this recursive function (it doesn’t do anything except
print a lot of numbers, but it is easy to understand)

def func t ion_1_rec (n) :
i f n == 1 :

re turn
e l s e :

fo r i in range (n) :
p r in t i

func t ion_1_rec (n−1)

The recurrence relation for function_1_rec looks like this

T(1) = c1

T(n) = c2 + c3 ∗ n + T(n− 1)

Make sure you understand how this recurrence relation is derived
from the definition of the function.

We will solve this the same way as we solved the last example, by
expanding the recursive reference:

complexity analysis part 3 5

Note that T(n− 1) = c2 + c3 ∗ (n− 1) + T(n− 2)

T(n) = c2 + c3 ∗ n + c2 + c3 ∗ (n− 1) + T(n− 2)

T(n) = c2 + c3 ∗ n + c2 + c3 ∗ (n− 1) + c2 + c3 ∗ (n− 2) + T(n− 3)

regrouping, we get

T(n) = c2 + c2 + c2 + c3 ∗ (n + n− 1 + n− 2) + T(n− 3)

We can identify the pattern now. The ith line of the expansion is

T(n) = c2 ∗ i + c3 ∗ (n + n− 1 + · · ·+ n− (i− 1)) + T(n− i)

When we expand this all the way, we get

T(n) = c2 + ... + c2 + c3 ∗ (n + n− 1 + n− 2 + ...) + T(1)

As before, we need to work out how many c2’s are in this sum,
and now we also have to work out the value of the expression that is
multiplied by c3.

The number of c2’s is easy: as with our previous recurrence rela-
tion, the number of c2’s, added to the number in the T() recursive
reference, is always n

The value of the expression that is multiplied by c3 is a little harder
to calculate, but we can do it. First we observe that the last element
in the sum inside the parentheses is always 1 more than the number
in the T() recursive reference. (For example, in the line containing
T(n− 3), the last element of the sum inside the parentheses is n− 2.)
So when the recursive reference is T(1), the expression inside the
parentheses is

n + n− 1 + n− 2 + + 2

This is a lot like n + n− 1 + n− 2 + ... + 1, and we have a formula
for that: we know n + n− 1 + n− 2 + ... + 1 =

(n + 1) ∗ n
2

But the left side of this formula is 1 bigger than what we want
(n + n− 1 + n− 2 + + 2) so we can subtract 1 from each side of the
formula to get

n + n− 1 + n− 2 + ... + 2 =
(n + 1) ∗ n

2
− 1

Now we can replace all the unknowns in our formula for T(n)

complexity analysis part 3 6

T(n) = c2 ∗ (n− 1) + c3 ∗
(
(n + 1) ∗ n

2
− 1

)
+ c1

Simplifying this is easy, applying our standard O analysis is even
easier, and we end up with

T(n) ∈ O(n2)

Now we have another pattern to add to our collection of recurrence
relations:

Recurrence Relation O Classification
T(1) = c1

T(n) = c2 + T(n− 1)
O(n)

T(1) = c1

T(n) = c2 + c3 ∗ n + T(n− 1)
O(n2)

complexity analysis part 3 7

Binary Search

Consider the recursive binary search algorithm - it has been posted
previously so I won’t repeat it here.

The recurrence relation for binary search is

T(1) = c1

T(n) = c2 + T(n
2)

Don’t just take my word for it! Go
through the code and make sure you see
why this is true.

Applying our now standard expansion technique, we get

T(n) = c2 + c2 + T(n
4)

T(n) = c2 + c2 + c2 + T(n
8)

and if we expand this fully we get

T(n) = c2 + ... + c2 + T(1)

and as always, the question is "how many c2’s are there"? Also,
you may be saying that this expansion can’t be correct because most
of the time n won’t divide evenly by 2, 4, 8 etc. Well, you are right,
but it turns out not to matter. If you do the recurrence relation with
all of the precise details, accounting for odd and even values of n ...
you get exactly the same result as we will get by assuming that all
the divisions work exactly. So I’m taking the easy route and ignoring
those details. Basically, we are assuming that n is a power of 2.

So, back to the question of counting the c2’s. Here we need a bit
of clever insight. When the denominator inside the T() recursive
reference is 2, there is 1 c2. When the denominator is 4, there are 2 c2’s.
When the denominator is 8, there are 3 c2’s not much of a pattern
unless you notice that 2 = 21, 4 = 22, and 8 = 23 the number of c2’s
is equal to the exponent when the denominator is written as a power
of 2.

complexity analysis part 3 8

So when we write

T(n) = c2 + ... + c2 + T(1)

we need to ask what is the denominator in the T(1) recursive refer-
ence.

In other words, what is x, when n
2x = 1 ?

This is the same as solving for x in n = 2x, and the solution is
simply x = log2 n As previously explained, we don’t need

to specify the base of the log when we
are working out the O complexity, so we
will drop it when we get to the end of
this derivation.

Thus the number of c2’s is log2 n, and we get

T(n) = c2 ∗ log2 n + c1

This doesn’t look like the type of function we are used to dealing
with in our O classification method but we can handle it exactly the
same way. log2 n is just a function of n, and it comfortably fills the role
of g(n) in the definition of Big-O complexity.

So we conclude that T(n) ∈ O(log n) and now we have another
pattern to add to our table.

Recurrence Relation O Classification
T(1) = c1

T(n) = c2 + T(n− 1)
O(n)

T(1) = c1

T(n) = c2 + c3 ∗ n + T(n− 1)
O(n2)

T(1) = c1

T(n) = c2 + T(n
2)

O(log n)

complexity analysis part 3 9

Merge Sort

We’ll do one more - recursive merge sort. Take time to confirm that
the recurrence relation for this recursive function is

T(1) = c1

T(n) = c2 + c3 ∗ n + 2 ∗ T(n
2)

We expand this in the usual way. As with binary search, we make
the simplifying assumption that n is a power of 2.

T(n) = c2 + c3 ∗ n + 2 ∗ (c2 + c3 ∗
n
2
+ 2 ∗ T(n

4))

T(n) = c2 ∗ (1 + 2) + c3 ∗ (n + n) + 4 ∗ T(n
4)

Expand again ...

T(n) = c2 ∗ (1 + 2) + c3 ∗ (n + n) + 4 ∗ (c2 + c3 ∗
n
4
+ 2 ∗ T(n

8))

T(n) = c2 ∗ (1 + 2 + 4) + c3 ∗ (n + n + n) + 8 ∗ T(n
8)

The final expansion will give us

T(n) = c2 ∗ (1 + 2 + 4 + . . .) + c3 ∗ (n + · · ·+ n) + x ∗ T(1)

Now we have to solve (1 + 2 + 4 + . . .)

and (n + · · ·+ n)

and x

Inspection shows us that at the ith stage of the expansion, the equa-
tion looks like this:

T(n) = c2 ∗ (1 + 2 + · · ·+ 2i−1) + c3 ∗ i ∗ n + 2i ∗ T(n
2i)

As before, we see that when the term inside T() is 1, we must have
n/(2i) = 1, which gives us n = 2i, which gives us i = log2 n

We also see that the number of n’s that are multiplied by c3 is the
same i, so in the final expansion the number of n’s is log2 n

And, when i = log2 n, we get 2i = n

This gives

T(n) = c2 ∗ (1 + 2 + · · ·+ 2(log2 n)−1) + c3 ∗ n ∗ log2 n + n ∗ T(1)

complexity analysis part 3 10

That just leaves the (1 + 2 + · · ·+ 2(log2 n)−1) to be resolved. These
are powers of 2, and the last term is 2(log2 n)−1

But 2(log2 n)−1 =
2log2 n

2
=

n
2

So when we get to the end of the expansion, we have (1 + 2 + 4 +

· · ·+ n
2
)

This is another sum for which we have a simple formula: 1 + 2 +

4 + · · ·+ n
2
= n− 1 whenever n is a power of 2.

Putting this in the equation, and replacing T(1) with c1, we finally
get

T(n) = c2 ∗ (n− 1) + c3 ∗ n ∗ log2 n + c1 ∗ n

In this function, the n ∗ log2 n term grows the fastest (its growth
rate lies between n and n2), so our standard O-class analysis gives

T(n) ∈ O(n ∗ log n)

And now we can add the final row to our small table of patterns

Recurrence Relation O Classification
T(1) = c1

T(n) = c2 + T(n− 1)
O(n)

T(1) = c1

T(n) = c2 + c3 ∗ n + T(n− 1)
O(n2)

T(1) = c1

T(n) = c2 + T(n
2)

O(log n)

T(1) = c1

T(n) = c2 + c3 ∗ n + 2 ∗ T(n
2)

O(n ∗ log n)

There are infinitely many possible recurrence relations, but un-
derstanding and recognizing these four will get you a long way.
You should be able to analyse a recursive function and derive its re-
currence relation. If the recurrence relation is one of these four you
should be able to state the O classification.

complexity analysis part 3 11

Exercise:

Here’s another commonly-seen recurrence relation that I could have
added to the table. Work out its O classification:

T(1) = c1

T(n) = c2 + c3 ∗ n + T(n
2)

	Recurrence Relations

