
Graphs
Robin Dawes
February 24, 2021

R
efreshes our memories regarding some basic definitions of
graph theory. We are introduced to the Breadth-First Search
algorithm for graphs. We discover that the complexity of this

algorithm depends on the data structure we use to represent the graph.

.

Definitions and Notation

Most of the following definitions and notation are introduced in
CISC-203. This information is included here for completeness.

Graphs can be viewed as generalizations of trees (actually, trees
are a subclass of graphs). A graph G consists of two sets: a set V of
vertices, and a set E of edges, where each edge consists of a pair of
vertices in V.

Terminology:

We use n to denote |V|

We use m to denote |E|. Note that if we disallow duplicate edges
and loops, m ≤ (n

2).

Two vertices x and y are adjacent if (x, y) ∈ E

If x and y are adjacent, we call them neighbours.

A loop is an edge where both vertices are the same, such as (x, x).
Loops are useful in a few situations but for the most part we will focus
on graphs that have no loops.

Sometimes it is reasonable to have multiple edges between a pair
of vertices. These are called multiple edges (surprise!) - usually we
prohibit this for the sake of simplicity.

Graphs with no loops and no multiple edges are called simple
graphs. Unless otherwise noted, all the graphs we discuss will be
simple graphs.

graphs 2

If the pairs in E are unordered pairs (ie. the pair (x, y) is the same
as the pair (y, x)) then we say the graph is undirected. If the pairs in
E are ordered pairs (ie. the pair (x, y) is not the same as the pair (y, x)
) then we say the graph is directed and we say that the edges are
directed from the first vertex in the pair to the second. When writing
a directed edge it is traditional to place a small left-to-right arrow
above it, so the directed edge from x to y is written as (−→x, y) . We call
x the tail of the edge, and y the head of the edge. When drawing a
directed edge in a graph, we use an arrow that goes from the tail to
the head of the edge.

It is possible for a graph to contain some undirected edges and
some directed edges. Such a graph is called mixed.

In our extremely brief study of the data structures that are suitable
for graphs we will deal almost exclusively with undirected graphs. We can say that undirected graphs are

just a special case of directed graphs
because an undirected edge (x, y)
can be re-imagined as two directed
edges (−→x, y) and (−→y, x) . This idea was
explored extensively by the Canadian
graph theorist William Tutte, who
was a professor at Waterloo. During
World War II he played a vital role in
Turing’s code-breaking work. Tutte’s
contributions are considered to have
shortened the war significantly. Look
him up on Wikipedia!

The degree of a vertex is the number of times the vertex appears
in E. If loops are prohibited (as is usual), the degree of a vertex is
the number of edges that touch the vertex. We use d(x) to denote the
degree of x .

A walk is a sequence of vertices such that consecutive vertices in
the sequence are adjacent in the graph (ie. each pair of consecutive
vertices in the sequence are joined by an edge in the graph). A walk
can contain the same edge multiple times.

A circuit is a walk where the first and last vertices are the same.

A path is a walk in which all the vertices and edges are distinct.

A cycle is a circuit in which all the vertices and edges are distinct
(with the exception of the first vertex, which is also the last vertex).

An equivalent definition of a cycle is a path plus one more edge
that joins the two end vertices of the path.

Unless otherwise noted, we will always limit our discussions to

- undirected graphs with no multiple edges and no loops

- paths (rather than walks)

- cycles (rather than circuits)

Edges may be weighted. The weight of an edge e is usually de-
noted by w(e). If the edge is identified by its end vertices such as

graphs 3

(x, y) , we will sometimes indicate its weight by w(x, y) . Edge weights
are sometimes referred to as costs.

In general, graphs are used to represent bilateral (ie. undirected)
or unilateral (ie. directed) pairwise relationships between discrete
entities. In a communication network, the edges could represent the
existence of a direct link between two objects in the network. In a
social network, the edges could represent "friend" links.

A graph G is connected if for each pair of vertices x and y, there
is a path in G that starts at x and ends at y. Connectivity is a funda-
mentally important property of graphs and we will look at methods of
determining if a graph is connected.

One extremely important problem in applied graph theory is the
problem of finding shortest paths in a graph (applications include
internet routing and road trip planning). In an unweighted graph, the
shortest path between vertex x and vertex y is a path with one end at
x, the other end at y, and the least possible number of edges of all such
paths.

In a weighted graph, the term "shortest path" between x and y is
often used to mean a path with one end at x and the other end at y
that has the least sum of the weights of its edges of all such paths. This
is more properly called a "least weight path" but the two terms are
often used interchangeably.

If we think of an unweighted graph as actually having w(e) = 1 for
all edges, the two versions of the problem become the same.

We will examine an algorithm that, given a starting vertex v in an
unweighted graph, will find shortest paths from v to all other vertices
in the graph. We actually mentioned this algorithm elsewhere in these
notes when we looked at traversals of binary trees - the algorithm is
Breadth-First Search.

graphs 4

Breadth-First Search

The idea of BFS is to explore the graph in levels. The first level con-
sists of the start vertex, then all of its neighbours are on the next level,
then all of their neighbours are on the next level, etc. We keep track of
which vertices we have seen so that we don’t go around in circles. ... or cycles, ha ha.

Consider this graph. If we start at vertex E, the set of vertices on the
first level is just E. its neighbours are G, A and F - we do not specify
an order for these vertices, and the set of vertices on the next level is
{F, G, A} To get the next level, we take one of these vertices ... say F ...
and add all of its neighbours that we have not already seen to the set
for the next level. This gives us B. Then we take another vertex from
the current level ... say G ... and add its neighbours (again, only the
ones we haven’t seen) to the new set, which is now {B,D}. And then
we take the next (and in this case last) vertex from the current set,
which is A. A has no new neighbours to contribute, so the next level
consists of {B,D}. The final level of the exploration consists of just {C}.

We often keep track of the "neighbour" relations that we are using
- this lets us build a BFS tree for the graph. The exploration above
would give this tree:

It is important to see that this will always generate a tree - the rule
that we only go to each vertex once guarantees this. It is also impor-
tant to be aware that the tree is not unique.

Even though we can get several different trees by applying BFS and
starting at E, you will see that they have something in common: the
sets of vertices at each level are always the same. Make sure you can
explain why this is true.

To see why all BFS trees starting from E
have the same level sets, draw the tree
that starts at E but then chooses A as the
first vertex on the next level to explore
further - then do it again and choose G
first.

It is also important to see that the paths with one end at E in a BFS
tree that starts at E are in fact shortest paths from E to all the other
vertices. In fact this is easy to see: if there were a shorter path from E
to some vertex X, then X would be on a higher level of the BFS tree.
Each vertex is added to the tree as soon as it is reachable.

We should also recognize that the number of levels in the BFS tree
can vary depending on the vertex where we start. To convince yourself
of this, find a vertex in the graph shown above which gives BFS trees
with a different number of levels than the BFS trees that start at E.

Let’s look at pseudo-code for the BFS algorithm. The first thing we
need to do is decide how to keep track of the vertices at the "current"
level while we build the set of vertices at the "next" level. Fortunately

graphs 5

this is very easy - we can just use a queue. Each time we find new "New" in the sense that we haven’t seen
them before.neighbours for a vertex at the current level, we add them to the end of

the queue. This ensures that we will work through all vertices at the
current level before we start on the next level.

We need to make sure each vertex is only added to the queue once
- we can do this by adding a Boolean attribute to the Vertex object, or
we can simply create a Boolean array of length n with one element for
each vertex. Either way, we set the Boolean for vertex X to True when
we add X to the queue.

def BFS(v):

Q = new queue

Q.add(v)

set the "added_to_queue" Boolean for v to True

while Q is not empty:

x = Q.remove_first()

process x # This is actually just a place-holder operation.

In practice we would probably print x’s value,

or add x to the BFS tree, or record x’s distance

from v, or modify x’s value, or do some other

specific processing

for each neighbour y of x:

if (y not marked "added_to_queue"):

Q.add(y)

set the "added_to_queue" Boolean for y to True

You should work through this for the graph in our examples to see
how it works. You will observe that each vertex is added to Q exactly
once and removed from Q exactly once.

If we want to build the tree, every time we add a neighbour y of x
to the queue we need to include the edge from x to y in our tree. We
can represent the tree by the list of edges we have used.

The tree that we generate through BFS has a useful property: the
graph is connected if and only if a BFS tree of it contains all n vertices.
This gives us a very practical method to test a graph for connectivity.
When we look at other graph algorithms we often start with "Assume
G is connected". We can make that assumption because now we have
a simple way to test it - and if the graph is not connected we can either
deal with each piece separately, or (if appropriate) add some more
edges until it is connected.

Now we can address the crucial question: what is the complexity of

graphs 6

this algorithm? First, we can assume that all queue operations are in
O(1). Second, we can see that (assuming the graph is connected), all n
vertices go onto Q and come off Q again. Thus the while loop executes
n times. The tricky part of the analysis is the for loop. We need to find
or build a list of the neighbours of vertex x. The time required to do
this depends on the graph representation we are using.

There are two candidates: an Adjacency Matrix, or a set of Ad-
jacency Lists. We now interrupt our discussion of the complexity of
the BFS algorithm to describe these structures. Regularly scheduled
programming will resume shortly.

Adjacency Matrix Representation

An adjacency matrix for a graph G with n vertices is an n ∗ n matrix
A where

- A[i, j] = 1 if vertex i is adjacent to vertex j

- A[i, j] = 0 if vertex i is not adjacent to vertex j

If the edges have weights, then

- A[i, j] = w(i, j) if vertex i is adjacent to vertex j

- A[i, j] = 0 if vertex i is not adjacent to vertex j

Note that the size of A is n2 regardless of the number of edges in E

If the graph is undirected, A[i, j] = A[j, i]. The lower left diagonal
half of the matrix is the mirror image of the upper right diagonal half.
In practice we often don’t bother filling in the lower left diagonal half
because all of its information is already in the upper right diagonal
half.

In the dark ages of computing when
memory was critically expensive and
usually in extremely short supply, we
used to use those empty array elements
to store other data.

However if the edges are directed, we set A[i, j] = 1 (or w(i, j) for
a weighted graph) if there is a directed edge from vertex i to vertex
j, and A[i, j] = 0 otherwise. In the adjacency matrix for a directed
graph, it is not necessarily true that A[i, j] = A[j, i].

Here is the adjacency matrix for the graph shown above. Note that
the ordering of the rows and columns is arbitrary - as long as we know
which row and which column corresponds to each vertex, we are ok.

graphs 7

A B C D E F G

A 0 1 0 1 1 0 0
B 1 0 1 1 0 1 0
C 0 1 0 0 0 0 0
D 1 1 0 0 0 0 1
E 1 0 0 0 0 1 1
F 0 1 0 0 1 0 0
G 0 0 0 1 1 0 0

Adjacency Lists Representation

The idea behind the adjacency lists representation of a graph
is to store a list of all the neighbours of each vertex. We use a 1-
dimensional array for the vertices. To the array element for each vertex
we attach a linked list of the neighbours of that vertex - the list of
neighbours is in no particular order. If the graph is undirected, each
edge will create an entry in two of the adjacency lists. If the edges are
directed, an edge from vertex i to vertex j would be represented by
including j in the adjacency list for vertex i but not vice versa.

If the edges are weighted the weights of the edges can be stored as
auxiliary data in the adjacency lists. Here is an adjacency list represen-
tation of the graph shown above:

Back to BFS

We now return to the discussion of the complexity of the BFS algo-
rithm. As you will recall, we were trying to determine the complexity
of the for loop in which we need to find all neighbours of a vertex x.

If we are using an adjacency matrix this will take O(n) time, even
if vertex x has very few neighbours ... because we have to look at
an entire row of the matrix A. This gives our BFS algorithm O(n2)

complexity.

graphs 8

But if we are using adjacency lists we don’t need to do any work to
obtain the neighbours of x. The structure simply gives us the list of
neighbours and all we need to do is iterate through it.

This means that the inner loop (the for loop) will potentially ex-
ecute a different number of times for each vertex - this may make it
seem impossible to compute the complexity. But here is one idea (not
a very good one as it turns out): each vertex has at most n− 1 neigh-
bours, so this inner loop will execute at most n − 1 times for each
vertex ... this gives us O(n2) complexity again.

A bit more thought lets us obtain a more precise bound. Once we
have the list of neighbours of x, the "if (y not marked "added_to_queue")"
test executes once for each neighbour of x. And since each vertex gets
to take the role of x exactly once, the total number of times this test is
executed is exactly the sum of the lengths of all the adjacency lists.

And we know what that is! The length of each vertex’s adjacency
list is the degree of the vertex, so we just need to sum the degrees. We
know from basic graph theory that for any graph,

∑ d(v) = 2m

where d(v) is the degree of vertex v and m is the number of edges
in the graph.

So this test (which is the most frequently executed line in the algo-
rithm) executes O(m) times.

In summary, when we use adjacency lists the complexity of BFS is
in O(m). Some authors write this as O(n + m)

and this is technically correct ... but
I am assuming the graph is at least
potentially connected, which means
m ≥ n− 1. This makes it unnecessary to
include the n in the complexity for our
analysis.

So we have two different complexities, depending on which data
structure we use. Which one is better? Does it make a difference?

Recall that m ≤ (n
2) =

n ∗ (n− 1)
2

, so O(m) can never be worse
than O(n2).

But in many "real-world" graphs, most (or all) of the vertices have
very low degree. It is not uncommon to have a restriction such as "all This fact leads to the depressing truth

that it is probably true that on average,
your friends have more friends than
you do! This is known as the Friendship
Paradox, but it’s not really a paradox,
just a surprising result of the typical
structure of social networks.

vertices have degree ≤ k" where k is a small constant. For example,
the graph might represent a network of micro-processors, each of
which can only connect to at most 4 other processors. If all degrees are

≤ k, the number of edges is ≤ k ∗ n
2

..... which is in O(n) because k is
constant.

graphs 9

So in this situation BFS runs in O(n) time using adjacency lists, and
in O(n2) time using an adjacency matrix.

The bottom line is that for this algorithm, adjacency lists are never
worse than the adjacency matrix, and they are sometimes much better.

There are other problems and algorithms for which the adjacency
matrix is preferable. For example, certain structural properties of the
graph can be determined by performing algebraic computations on
the adjacency matrix.

	Definitions
	Breadth-First Search
	Adjacency Matrix Representation
	Adjacency Lists Representation
	Back to BFS

