A Table, A Chair e .1 1"A table, a chair, a bowl of fruit and a
. violin; what else does a man need to be
Robin Dawes happy?" — Albert Einstein

November 1, 2021

ou will implement a variety of hashing functions and compare
their effectiveness for hashing strings.

Preamble

A certain Canadian university has decided to get in on the super-hero
film game by creating a set of interconnected movies which will be
collectively called the HOTNCU (Harvard of the North Cinematic
Universe). Each movie will focus on the thrilling adventures of one
or more super-heroes who all happen to be students at the mysterious

Institute Q, situated in a mythical far-south land called Tonario. The The University Administration spent
millions of dollars coming up with this

projected number of movies in the series is 4000. Teams of writers are ord i
clever disguise for the actual university.

already at work scripting all these movies.

Each movie under development has been assigned a project name
to preserve secrecy. Each project name is a sequence of three 5-letter
English words. A sample set of project names is provided in the file
HOTNCU_project_names.txt.

You have been assigned the task of creating a data structure that
can

- support insert and search operations

- provide access to each item with an average of < 2 steps. For
more information on this, see the section titled “Computing
the Average Search Sequence Length” below.

The delete operation is optional. You are not required to implement
it (but it’s really easy and would be good practice).

Your hard-earned data structures expertise has convinced you that
neither a sorted array nor a binary tree can meet this requirement, so
you have settled on using a hash table.

A TABLE, A CHAIR ...

The HOTNCU Project Director was previously a Computer Sci-
ence professor and she has taken an interest in your project. She has
already decided that you are required to use some form of open ad-
dressing. She is aware that your table will need to be > 4000 in size
but she wants you to keep it small. (It’s easy to store all the values in
a table that is very close in size to the number of keys. The problem
is that with a smaller table, the number of collisions will grow. It’s
also easy to get very good performance by using a huge table. The
challenge is to get good performance with a small table.)

She wants you to explore three forms of open addressing: linear
probing, quadratic probing and double hashing. For each method
she wants you to experiment with different hashing functions and
different combinations of values to determine a table size that lets you
achieve the required performance standard.

Part 1:

Decide how you will convert the project names into usable key values.
This may involve converting each letter in a project name to an integer,
or simply treating each project name as a bit string and converting that
entire bit string into an integer. You will find a wealth of ideas on the
Internet. Whatever method you decide on, explain why you chose it
and remember to cite your source if it is not your own creation.

Part 2:

Implement a hash table where collisions are resolved by linear prob-
ing.

Use an 1’ (k) hashing function of your choice.

It is perfectly acceptable to just use the “string-to-integer conver-
sion” method that you designed for Part 1. It is also acceptable to
take the output of your string-to-integer conversion and apply an-
other hashing function to it (such as “mid-square” or “multiplication
method” - as explained in the course notes). As always, I encourage
you to make use of available sources to learn more about hashing
functions. However, using downloaded code from external sources
is not acceptable — but writing your own code based on a published
algorithm is fine (remember to cite your sources). You can also create
your own hashing function from scratch — feel free to be creative. You

A TABLE, A CHAIR ...

may wish to experiment with different #’(k) functions to ry to reduce
the number of collisions in your table.

Now try to find the smallest table size that lets you insert all the
project names with an average search sequence length that is < 2

Part 3:

Repeat Part 2 but use quadratic probing instead of linear probing.
Try at least two different combinations of ¢; and ¢, such as (1,1)
and 51
2°2
or other combinations

A table size must be rejected if your insertion method fails to insert
one or more of the project names into the table.

Hint: start with a small table and try bigger and bigger tables until
you find one that holds all the keys and satisfies the average search
path length requirement.

Part 4:

Repeat Part 2 but with Double Hashing. You may want to try different
combinations of 1 (k) and hy (k).

You are free to choose any hashing functions you like for h; (k) and
hy(k) , but as with Parts 2 and 3 you must implement them yourself.
You can reuse functions that you used in the earlier parts if you wish.

One approach to creating and trying different hashing functions
is to start with one that involves a constant number in some way —
perhaps as a multiplier, or an exponent. If changing the constant
value produces different results, this gives a way to easily create new
hashing functions. Here’s an example:

A TABLE, A CHAIR ...

ha(k) :
x = log, (k) * c;

y=x-|x]
return |m * y|

This function involves the constant ¢; . We can easily create a new
hashing function using a different constant c;.

You can certainly use this function in your experiments ... but I
strongly encourage you to do some reading and experiment with
some others. This function doesn’t seem to perform very well on the
project name set — or perhaps I just haven’t found a good c; value.

Part 5:

Let LP be the size of table required to store all the project names with
an average search sequence length < 2, using Linear Probing to
resolve collisions.

Let QP be the size of table required to store all the project names
with an average search sequence length < 2, using Quadratic Probing
to resolve collisions.

Let DH(d) be the size of table required to store all the project
names with an average search sequence length < 2, using Double
Hashing to resolve collisions.

Hypothesis: DH < QP < LP
Consider the results of your experiments.
Do they support the hypothesis?

Note: Since there are infinitely many variations of quadratic prob-
ing and double hashing, a small experiment such as this one cannot
give conclusive evidence either way. A more comprehensive compar-
ison would be much too time-consuming for this assignment ... but
if you have some free time I think it might be interesting to do a deep
dive into comparing Quadratic Probing with Double Hashing. Theory
predicts that DH should be better, but maybe in practice there’s not
much difference ...

Second note: In this assignment I have asked you to measure the

A TABLE, A CHAIR ...

average search sequence length. The maximum search sequence
length is also of interest. In my own experiments on this data set, I
usually find that when the average search sequence length is < 2, the
maximum search sequence length is over 20 ! This means that most
keys don’t collide at all, but a few keys collide a lot.

Computing the Average Search Sequence Length

Every time your program looks at the contents of a table address,
that counts as a step in the current operation. So if you are inserting a
value and you try addresses 17, 5, and 83 before finally inserting the
value in address 36, that insertion sequence has four steps.

Since we don’t know which keys are most likely to be searched
for, we can assume that each key is equally likely to be the target of
a search. This means that the average number of steps in a search
sequence will be exactly the same as the average number of steps in
an insertion sequence. To compute that average we can add up the
number of steps made during all the insertions and divide by the
number of values that were inserted.

Thus you can compute the length of the search sequence for a key
when the key is inserted. You don't have to insert all the keys and then
search for them.

What Do I Submit?
Please submit your source code for the experiment, a summary of

your experimental results, and your answer to the question regarding
the stated hypothesis.

Due Date

The assignment was originally due on 20211105. This date has been
changed. The assignment is now due at 11:59 PM on 20211112.

	Preamble
	Part 1:
	Part 2:
	Part 3:
	Part 4:
	Part 5:
	What Do I Submit?
	Due Date

