Object-Oriented Programming'
Robin Dawes
November 14, 2021

= URNs "traditional” programming inside out by making objects
%Ig (or more precisely, models of objects) the fundemental build-

ing blocks of programs.

In the Beginning ...

IN THE EARLY DAYS of computing, most people focused on develop-
ing and improving the algorithms used to solve problems. Data was
viewed as what you fed into the algorithm. If the question of how the
data should be organized came up, it was in the context of trying to
make the algorithms run faster.

The Dawn of OOP

IN THE 1960’s, a new way of looking at programming started to ap-
pear. The fundamental idea was that programming could be viewed
as the process of creating simplified versions of "things" (either real
or conceptual) and then defining operations on those things, and in-
teractions between things. People had already realized that data often
occurs as groups of values all related to a particular thing. But in the
new way of thinking, called Object-Oriented Programming, the abil-
ity to create clear and self-contained models became central - even
primary.

Carrying forward the real estate agent scenario, an object-oriented
program designed to manage her inventory might start by defining
a generic informational model of a house. The model might include
information such as the address, the square-footage of the property
and building, an image of the house, the present owner’s name, the
price, and so on. The program would define this class (or type) of
object, and then create instances of the class, each one populated
with values for the various information fields. Each instance would
represent one property that the agent is trying to sell. Each instance
of the house model would be a distinct entity within the program.
There would be specific functions designed to access and modify

Laka OOP

For example, a real estate agent’s data
might consist of groups of data, each
group containing a property address,
asking price, number of bedrooms, etc.

The expression "Object-Oriented Pro-
gramming" was coined by Alan Kay
around 1967.



OBJECT-ORIENTED PROGRAMMING

the individual pieces of information about a house - for example, to
change the asking price - and other functions defined to operate on a
collection of houses - for example, to find the house with the lowest
asking price.

Now suppose the real estate agent decides to branch out and deal
with business properties as well as residential properties. The model
for business properties would have some pieces of information in
common with the house model - for example, address, price, and
square-footage - but there would be other pieces of information that
would only be relevant to one type of property - for example, a busi-
ness property might not have a "number of bedrooms" field in its
description.

The OOP approach would be to create a more generic model called
"Property" which would specify the pieces of information and opera-
tions that the two types of property have in common, and then define
the "Residential”" and "Business" models as extensions of the "Prop-
erty" model, each specifying the additional pieces of information that
are particular to them.

Going even further, the program could define a generic model
for clients of the real estate agent. This "Client" model could then be
extended by a "Buyer" model and a "Seller" model. Functions could
then be defined that would permit interactions between clients and
properties. For example, a function could be written to make a list of
potential buyers for a particular property, or to schedule a showing
of a property to a buyer. The scheduled visit to the property could be
stored in another type of object - probably called an "Event" or some-
thing similar. The entire program design process revolves around
defining the models of the objects we need, and defining the functions
that manipulate and relate them.

In Python, these models are created using the class keyword. Each
class definition usually contains an __init__ function that identifies
the pieces of information that are relevant to an instance of the class,
and other functions that relate to the instance as well. The class can
also contain variables and functions that are not specific to a particular
instance. The instance variables and functions are distinguished from

2

the class variables and functions by the keyword self. Much more complete information about

these Python-specific details will be

found in the posted demo code samples.



OBJECT-ORIENTED PROGRAMMING 3

Fundamental Concepts of OOP

OBJECT-ORIENTED PROGRAMMING has developed into a huge branch of
computer science, and it involves many advanced subtopics that you
will encounter in future courses. For now, I'm just going to list four
foundational ideas of OOP .

Encapsulation

Encapsulation refers to the idea that all the information and function-
ality that relates to an object should be contained within the object ...
and so far as is possible, it should be hidden inside the object. By this I
mean that the information should only be accessible through a defined
set of functions provided in the class itself. This aspect of OOP is often

referred to as INFOrRMATION HIDING I think of it as "NOYB" information
management ... as in "None Of Your
Business" - but I doubt that anyone else

. uses this term!
Abstraction

When we make a model of a type of object, we have to decide which
pieces of information are required - sometimes there are many pieces

of information that we decide to ignore. The process of deciding what For a house, we might decide to leave
information to include and what to leave out is known as ABSTRAC- out the colour of the window-frames.
TION.

Inheritance

When one class extends another class, it inherits the whole template
of its parent class - all of the variables and functions. This is useful
because if there is a particular variable or function that we need in
many of our classes, we can avoid having to define the variable or
function in each of the classes. Instead, we can put the definition in a
generic class and have all of our important classes extend (and inherit
from) the generic class.

Polymorphism

Polymorphism refers to the fact that different classes can have vari-
ables and/or functions that have the same name, but completely dif-
ferent definitions. For example, if our classes represent different types
of animal, then the "find_food()" function in the Tiger class would



OBJECT-ORIENTED PROGRAMMING 4

probably be quite different from the "find_food ()" function in the
Sheep class.



	In the Beginning ...
	The Dawn of OOP
	Fundamental Concepts of OOP

