Kruskal’s MIST Algorithm

Robin Dawes
February 27, 2021

{l ¢ EMONSTRATES the truth of that rather horrific aphorism about
skinning a cat. Kruskal’s MST Algorithm is presented and

§ £0 evaluated.

Kruskal’s MST Algorithm

WE wiLL Now look at the second of our two MST algorithms: Kruskal’s
Algorithm. Like Prim’s Algorithm it is an instantiation of the Generic
MST Algorithm: it builds an MST by repeatedly choosing edges that
can be safely added to previously chosen edges. The efficient imple-
mentation of Kruskal’s algorithm motivates the introduction of a new
data structure.

Where Prim builds an MST by choosing edges that always form a
connected tree and expanding it until it is a spanning tree, Kruskal
chooses edges from different parts of the graph and eventually joins
them together to create an MST.

The fundamental idea of Kruskal’s Algorithm is to choose edges
that do not form cycles. Once we have chosen n — 1 edges of G that
do not form any cycles, we must have a spanning tree of G. The won-
derful thing about Kruskal’s algorithm is that it not only builds a
spanning tree, but it actually builds a Minimum Spanning Tree. It is
not difficult to prove that, but as with Prim’s Algorithm we will defer
the proof until later.

def Kruskal(G):
S = {} # S is the set of edges we choose for
while |S| < n-1:
Let (x,y) be a minimum-weight edge in G such that S +

S += (x,y)

return S

Kruskal’s MST Algorithm dates from
1956. It has a less convoluted prove-
nance than Prim’s Algorithm.

This may not be obvious, but it follows
from a result about trees that is covered
in CISC-203.

the MST

(x,y) contains no cycle

KRUSKAL'S MST ALGORITHM

There are two obvious methods for choosing the next edge. We
could sort the entire list of edges in O(m * logn) time, then test the
edges in order. Since we might need to examine every edge in the
sorted list before we find an MST, the while loop may execute m
times. On each iteration, the difficult task is testing the candidate
edge to see if it can be added to the previously chosen edges without
creating a cycle. If we use "total_test_time" to represent how long
all of this testing takes, then the time for the while loop is simply
O(total_test_time). Thus the whole algorithm runs in
O(m xlogn + total_test_time).

As an alternative we could place all the edges in a min-heap (since
we don’t necessarily need to sort the whole list of edges - if we are
lucky, the MST will be found quickly and most edges will never be
considered). We can build the heap in O(m) time, which is less
than the O(m x log n) required to sort the whole set of edges. The
heap would have height in O(log m) which is the same order class as
O(logn). Since we might need to access and update the heap O(m)
times, this also works out to O(m * log n) to access the edges in the
appropriate order and fix the heap after each access. Once again, we
need to test each candidate edge to see if it creates a cycle, so again
we get O(total_test_time) for this, and the whole algorithm runs in
O(m xlogn + total_test_time) ... the same complexity as the version
in which we sort the full set of edges. The actual running time of this
heap-based version may be less than the "sort-all-the-edges" version,
particularly if the MST is found without looking at too many edges.

Now we need to consider that "total_test_time". Suppose the edge
being considered is e = (x,y). We need a fast method to check to see
if x and y are already connected by some of the edges already chosen
(in which case we cannot use this edge). If x and y are not already
connected then we choose the edge and add it to the S set. But then
we need to update the "connected-to" information: we need a method
to record that all the vertices that were already connected to x are now
also connected to all the vertices that were already connected to y, and
vice versa.

We will look at two methods Both are based on the idea of identi- There are others - you may want to

fying groups of vertices that are currently joined by edges or paths in research this.

the set S of chosen edges.

KRUSKAL'S MST ALGORITHM

Solution 1

WE wiLL IDENTIFY each group of connected vertices by an unique in-
teger, stored in an array P[1..n]: P[x] holds the group_id for vertex

x. When we want to check an edge (x, y) to see if it creates a cycle,
we just need to compare the group_id of x to the group_id of y. This
takes constant time. If they are the same, x and y are already con-
nected and we cannot use the edge. If they are different, the edge is
safe to use. However, adding the edge (x,y) to S means that all the
vertices in the two groups are now connected. We need to find all the
vertices u such that P[x] = P[u], and change them all to P[y].

In pseudo-code it looks something like this:

def Kruskal(G):

S=1{}
for i =1 to n:
P[i] = i # each vertex is in its own group
while |S| < n-1:
Let (x,y) be a minimum-weight edge in G such that P[x] !'= P[y]
S += (X,y)
temp = P[Xx]
for i = 1 to n: # update the P values
if P[i] == temp:
P[i] = P[y]

The for loop that updates the P values is obviously in O(n). It ex-
ecutes every time we choose an edge, which happens exactly n — 1
times. Thus the total time involved in testing and fixing the P values
is in O(n?).

Using this method, Kruskal’s MST Algorithm runs in O(n?).

3

KRUSKAL'S MST ALGORITHM 4

Solution 2

INSTEAD OF USING an array that stores the group_id for each vertex,
we will use special trees called p1sJOINT-SET TREES to store this in-

formation. A disjoint-set tree consists of a number of vertices that Disjoint-set trees are sometimes called
SET-UNION TREES because - as we shall
) o)) see - they are particularly useful for im-
edges in the disjoint-set tree point upwards (from the leaves to their plementing the operation of computing

parents, from those vertices to their parents, and so on up to the root). the union of two sets.

represent set elements, with one designated as the root vertex. All

It is important to note that these disjoint-set trees are not subgraphs
of G - they simply represent the groups of vertices that are connected
by the edges that we choose during Kruskal’s algorithm.

At the start of the algorithm, each vertex is the sole leaf (and also
the root!) of a separate disjoint-set tree. As the algorithm progresses,
the disjoint-set trees will be combined. To test an edge (x,y) to see if
it can be used in the MST, we trace upwards from x in x’s disjoint-set
tree to the root of that disjoint-set tree, and then trace upwards from
y in y’s disjoint-set tree to the root of that disjoint-set tree. We will
see that this can be done in O(log n) time or better. If the two roots
are the same, then x and y are in the same disjoint-set tree - which
means they are already connected by edges in S so the edge (x,y)
cannot be added to the MST. If the two roots are not the same then
the edge (x,vy) is added to S and the two disjoint-set trees must be
combined. We will see that this can be done in constant time.

We can define a very simple Object for vertices of disjoint-set trees:
class Disjoint_Set_Tree_Vertex():
def init(int i):
int id =1
Disjoint_Set_Tree_Vertex parent = nil

int rank = 0 #rank indicates the height of the disjoint-set tree below this vertex

end of class definition

and with this in hand, the algorithm looks something like this:

KRUSKAL'S MST ALGORITHM

def Kruskal(G):
S={}
for i =1 to n:
P[i] = new Disjoint_Set_Tree_Vertex(i)

while |S| < n-1:
let (x,y) be the next candidate edge
x and y are Disjoint_Set_Tree_Vertex objects
trace up from x until we find a disjoint_set_tree_vertex
with no parent. This is the root of x's disjoint-set tree.

temp = X
while temp.parent != nil:
temp = temp.parent
Rx = temp # Rx 1s the root of x’'s disjoint-set tree
do the same for y
temp =y
while temp.parent != nil:
temp = temp.parent
Ry = temp # Ry is the root of y's disjoint-set tree
if Rx != Ry:

add the edge to S and combine the disjoint set trees by attaching
the one with fewer levels to the one with more levels
S += {(x,y)}
if (Rx.rank >= Ry.rank)
Ry.parent = Rx
Rx.rank = max(Rx.rank, Ry.rank+1)
else:
Rx.parent = Ry

As promised, combining the two sets takes constant time. How-
ever, we need to think carefully about which way we do the combi-
nation in order to minimize the number of levels in the combined
disjoint-set tree. Clearly we could use either "Rx.parent = Ry" or
"Ry.parent = Rx"to combine the two sets and the result would
be valid. But if we can minimize the height of the combined tree,
this will keep the "trace up" steps as efficient as possible. If the two
disjoint-set trees being combined have the same rank, it doesn’t mat-
ter which one becomes the parent of the other. But if (for example)
Rx.rank > Ry.rank then making Rx the parent of Ry creates a com-
bined disjoint-set tree in which the maximum trace-up time is less
than if we make Ry the parent of Rx.

With some careful counting that I'm not going to go into here, we
can show that if we always make the root of the taller disjoint-set tree
the parent of the root of the shorter disjoint-set tree, then the disjoint-
set trees will always have height in O(log 7). This means the trace-up
time is in O(logn).

But we can do even better! Every time we search for the root of
the disjoint-set tree for a vertex x, we can make x and all the ver-
tices "above it" in the disjoint-set tree point directly to the root of the
disjoint-set tree. This results in many vertices in the disjoint-set tree
having the root of the tree as their parent ... which means finding the

root of the disjoint-set tree for these vertices only takes 1 step. In other

words finding the root takes effectively constant time. The algorithm
for this tree-compression looks like this:

def find_root(x):
if x.parent == nil:
return x
else:
x.parent = find_root(x.parent)
return x.parent

Since we might have to do the tracing up operation for every edge
of the graph, total_test_time is effectively in O(m).

Thus we see that thanks to the choice of a good data structure,
Kruskal’s MST algorithm can be effectively executed in O(m * logn +
m) time, which reduces to effectively O(m logn) time. (Here I am
using the word effectively to mean "so close we can't tell the differ-
ence".

Note that if m isin O(n) (ie. G is sparse) then this algorithm effec-
tively runs in O(n x logn) time. However if m is in Q(n?) (ie. G is
dense) then this algorithm effectively runs in O(n? x log) time.

KRUSKAL'S MST ALGORITHM 6

Basically we show that the disjoint-set
trees are balanced.

A note about this effectively constant
time for finding the root of a disjoint-set
tree: it’s not quite constant. Its actual
growth rate is given by the inverse
Ackermann function «(n), which grows
very very very slowly ... so slowly that

,216
a(n) <5Vn<22 .
Thus for any plausible graph size,

finding the roots of the disjoint set trees
will take constant time.

KRUSKAL'S MST ALGORITHM

Prim vs. Kruskal - the Showdown

Now tHAT WE have seen two MST algorithms it is natural to ask
which is better. The answer of course is that it depends on the sit-
uation. Some authors suggest that for dense graphs Prim is faster
(recall the O(n?) implementation) but that for "typical graphs" - what-
ever that means - Kruskal is faster. I have not seen any convincing
evidence to support this claim but if "typical" means "sparse" then it is
plausible.

Last Words on Data Structures for MST Algorithms

THERE ARE OTHER, more sophisticated data structures that reduce
the complexity of finding an MST (particularly when using Prim’s
Algorithm) even further. Iencourage you to research them.

The current best MST algorithm that I know about is due to Chazelle
- it uses disjoint-set trees and a data structure called a soft heap that
Chazelle invented.

7

	Kruskal's MST Algorithm
	Solution 1
	Solution 2
	Prim vs. Kruskal
	Last Words

