
Proof of Correctness for Prim’s MST Algorithm
Robin Dawes
February 27, 2021

P
resents an inductive proof that Prim’s Agorithm successfully
finds an MST for any connected graph with non-negative edge
weights. This proof can be adapted to other algorithms.

.

The Long-Promised Proof

Here is Prim’s Algorithm.

def Prim(G): # G is a connected graph with weighted edges

choose any vertex v

chosen_edges = {}

T = {v} # T is the tree we are growing

R = {all vertices except v} # R is the rest of the vertices

while |T| < n: # keep going until T contains all vertices

let e be the least-weight edge that has one end in T and one end in R

suppose e = (x,y) with x in T and y in R

add e to chosen_edges

add y to T

remove y from R

return chosen_edges

Regardless of the implementation, the algorithm is based on the
pseudo-code given above . . . but up to this point we have given no
reason to accept that this algorithm does what it is supposed to. Does
it actually find an MST of the graph?

Theorem: Prim’s Algorithm finds an MST of G.

Proof:

Consider the situation before the first iteration. At this point the
tree contains only the vertex v. The algorithm chooses the least-weight

proof of correctness for prim’s mst algorithm 2

edge that joins v to another vertex in the graph. We will now show
that there is an MST that contains this edge. For this discussion we
will call this edge e and we will call its other end-vertex y.

Let T′ be any MST of the graph. If T′ contains the edge e the claim
is satisfied.

So suppose T′ does not contain e. If we add the edge e to T′, we get
a graph that contains exactly one cycle, and the cycle must contain
another edge (call it f) that has v as one of its end-vertices.

What do we know about f ? We know the weight of f must be ≥ the
weight of e . . . we know this because the algorithm chooses e instead
of f .

Consider T” = T′ + e− f . This consists of n − 1 edges and it has
no cycles (by removing f we have broken the only cycle) . . . and that
means it is a tree.

Furthermore since it contains all the vertices, it is a spanning tree.
Since we get from T′ to T” by removing an edge (f) and adding an
edge (e) such that the edge we are adding has weight ≤ the weight of
the edge we are removing, we see

weight(T”) ≤ weight(T′)

But since T′ is an MST, weight(T”) cannot be < weight(T′), so we
have

weight(T”) = weight(T′)

which means that T” is also an MST, and it contains e.

Thus the claim is true – there is an MST of the graph that contains
the first edge chosen.

We now continue with an induction-style proof.

Assume that for some k ≥ 1, after the kth iteration of the main loop
the set of edges chosen so far is a subset of some MST. We need to
show that this is still true after iteration k + 1 .

The proof of this follows exactly the same structure as the proof for
the base case. Let T be the (partial) tree constructed up to the end of
iteration k. Let edge g be the edge chosen during iteration k + 1. We
know that one end of g is in T and the other end is in R (the rest of the
vertices). If there is an MST that contains T and also contains the edge

proof of correctness for prim’s mst algorithm 3

g, we are done.

So suppose T + g is not contained in any MST. Let T′ be a MST
that contains T (we know T′ exists). Consider T′ + g. As in the base
case, we know this contains a cycle, and the cycle contains the edge
g. Suppose g = (x, y) where x ∈ T and y ∈ R . Then the cycle must
contain another edge – call it h – with one end in T and the other end
in R. The crucial observation is that the edge h could have been chosen
during iteration k + 1 . . . but it wasn’t . . . edge g was chosen instead.
This means w(g) ≤ w(h).

So consider T” = T′ + g − h. As in the base case we see that T”
must be an MST, and it contains all the edges chosen by the algorithm
up to and including iteration k + 1.

Thus by induction, we can claim:

“After each iteration, the set of chosen edges is a subset of the edges
of an MST.”

and when we reach |T| = n, the chosen n− 1 edges actually form
an MST.

Now you have a template ... try to prove the correctness of Kruskal’s
MST Algorithm and Dijkstra’s Shortest Path Algorithm.

	Proof of Prim

